AI Detects More Breast Cancers with Fewer False Positives
|
By MedImaging International staff writers Posted on 05 Jun 2024 |

Mammography is essential for reducing breast cancer mortality but is associated with risks of false-positive results. Additionally, population-based mammography screening imposes a significant workload on radiologists who must interpret a large number of mammograms, most of which do not require patient recall. The workload increases further when screening programs include double reading to enhance cancer detection rates and reduce false positives. In recent years, the integration of artificial intelligence (AI) systems in screening has been explored for its potential to boost screening accuracy and efficiency. By triaging likely normal results and providing decision support, AI can significantly reduce the burden for radiologists. Now, in a new study, breast radiologists have demonstrated the use of AI for enhancing breast cancer screening performance and lowering the incidence of false-positive findings.
The retrospective study by researchers at the University of Copenhagen (Copenhagen, Denmark) evaluated changes in workload and screening outcomes before and after the implementation of AI. They compared two groups of women aged 50 to 69 who underwent biennial mammography screening in Denmark. In the first group, mammograms were read by two radiologists before AI implementation from October 2020 to November 2021. In the second group, from November 2021 to October 2022, mammograms were initially analyzed by AI.
Mammograms identified by AI as likely normal underwent a single-read by one of 19 specialized full-time breast radiologists. Those not flagged as normal were subjected to a double-read by two radiologists with AI-assisted decision support. The AI system employed, trained via deep learning models, was designed to identify and assess suspicious lesions and calcifications. All women screened were followed for at least 180 days to confirm any findings of invasive cancers or ductal carcinoma in situ (DCIS) via needle biopsy or surgical specimens.
Overall, 60,751 women were screened without AI and 58,246 with the AI system. In the AI group, 66.9% (38,977) of screenings were single-reads, and 33.1% (19,269) were double-reads with AI support. The use of AI led to the detection of more breast cancers (0.82% vs. 0.70%) and a reduction in false-positive rates (1.63% vs. 2.39%) compared to non-AI screening. The recall rate in the AI-screened group dropped by 20.5%, and radiologists’ reading workload decreased by 33.4%. The positive predictive value of screenings using AI was also higher (33.5% vs. 22.5%). Additionally, a greater proportion of the invasive cancers detected in the AI group were 1 centimeter or smaller in size (44.93% vs. 36.60%). Further research is necessary to assess long-term outcomes and confirm that overdiagnosis does not increase with AI use. The results of the study were published on June 4, 2024 in Radiology, a journal of the Radiological Society of North America (RSNA).
"Radiologists typically have access to the women's previous screening mammograms, but the AI system does not," said Andreas D. Lauritzen, Ph.D., a post-doctoral student at the University of Copenhagen. "That's something we'd like to work on in the future."
Latest Radiography News
- Routine Mammograms Could Predict Future Cardiovascular Disease in Women
- AI Detects Early Signs of Aging from Chest X-Rays
- X-Ray Breakthrough Captures Three Image-Contrast Types in Single Shot
- AI Generates Future Knee X-Rays to Predict Osteoarthritis Progression Risk
- AI Algorithm Uses Mammograms to Accurately Predict Cardiovascular Risk in Women
- AI Hybrid Strategy Improves Mammogram Interpretation
- AI Technology Predicts Personalized Five-Year Risk of Developing Breast Cancer
- RSNA AI Challenge Models Can Independently Interpret Mammograms
- New Technique Combines X-Ray Imaging and Radar for Safer Cancer Diagnosis
- New AI Tool Helps Doctors Read Chest X‑Rays Better
- Wearable X-Ray Imaging Detecting Fabric to Provide On-The-Go Diagnostic Scanning
- AI Helps Radiologists Spot More Lesions in Mammograms
- AI Detects Fatty Liver Disease from Chest X-Rays
- AI Detects Hidden Heart Disease in Existing CT Chest Scans
- Ultra-Lightweight AI Model Runs Without GPU to Break Barriers in Lung Cancer Diagnosis
- AI Radiology Tool Identifies Life-Threatening Conditions in Milliseconds
Channels
MRI
view channel
AI Model Reads and Diagnoses Brain MRI in Seconds
Brain MRI scans are critical for diagnosing strokes, hemorrhages, and other neurological disorders, but interpreting them can take hours or even days due to growing demand and limited specialist availability.... Read moreMRI Scan Breakthrough to Help Avoid Risky Invasive Tests for Heart Patients
Heart failure patients often require right heart catheterization to assess how severely their heart is struggling to pump blood, a procedure that involves inserting a tube into the heart to measure blood... Read more
MRI Scans Reveal Signature Patterns of Brain Activity to Predict Recovery from TBI
Recovery after traumatic brain injury (TBI) varies widely, with some patients regaining full function while others are left with lasting disabilities. Prognosis is especially difficult to assess in patients... Read moreUltrasound
view channel
Portable Ultrasound Sensor to Enable Earlier Breast Cancer Detection
Breast cancer screening relies heavily on annual mammograms, but aggressive tumors can develop between scans, accounting for up to 30 percent of cases. These interval cancers are often diagnosed later,... Read more
Portable Imaging Scanner to Diagnose Lymphatic Disease in Real Time
Lymphatic disorders affect hundreds of millions of people worldwide and are linked to conditions ranging from limb swelling and organ dysfunction to birth defects and cancer-related complications.... Read more
Imaging Technique Generates Simultaneous 3D Color Images of Soft-Tissue Structure and Vasculature
Medical imaging tools often force clinicians to choose between speed, structural detail, and functional insight. Ultrasound is fast and affordable but typically limited to two-dimensional anatomy, while... Read moreNuclear Medicine
view channel
Radiopharmaceutical Molecule Marker to Improve Choice of Bladder Cancer Therapies
Targeted cancer therapies only work when tumor cells express the specific molecular structures they are designed to attack. In urothelial carcinoma, a common form of bladder cancer, the cell surface protein... Read more
Cancer “Flashlight” Shows Who Can Benefit from Targeted Treatments
Targeted cancer therapies can be highly effective, but only when a patient’s tumor expresses the specific protein the treatment is designed to attack. Determining this usually requires biopsies or advanced... Read moreGeneral/Advanced Imaging
view channel
AI Tool Offers Prognosis for Patients with Head and Neck Cancer
Oropharyngeal cancer is a form of head and neck cancer that can spread through lymph nodes, significantly affecting survival and treatment decisions. Current therapies often involve combinations of surgery,... Read more
New 3D Imaging System Addresses MRI, CT and Ultrasound Limitations
Medical imaging is central to diagnosing and managing injuries, cancer, infections, and chronic diseases, yet existing tools each come with trade-offs. Ultrasound, X-ray, CT, and MRI can be costly, time-consuming,... Read moreImaging IT
view channel
New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible
Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Global AI in Medical Diagnostics Market to Be Driven by Demand for Image Recognition in Radiology
The global artificial intelligence (AI) in medical diagnostics market is expanding with early disease detection being one of its key applications and image recognition becoming a compelling consumer proposition... Read moreIndustry News
view channel
Nuclear Medicine Set for Continued Growth Driven by Demand for Precision Diagnostics
Clinical imaging services face rising demand for precise molecular diagnostics and targeted radiopharmaceutical therapy as cancer and chronic disease rates climb. A new market analysis projects rapid expansion... Read more







