AI Detects More Breast Cancers with Fewer False Positives
By MedImaging International staff writers Posted on 05 Jun 2024 |

Mammography is essential for reducing breast cancer mortality but is associated with risks of false-positive results. Additionally, population-based mammography screening imposes a significant workload on radiologists who must interpret a large number of mammograms, most of which do not require patient recall. The workload increases further when screening programs include double reading to enhance cancer detection rates and reduce false positives. In recent years, the integration of artificial intelligence (AI) systems in screening has been explored for its potential to boost screening accuracy and efficiency. By triaging likely normal results and providing decision support, AI can significantly reduce the burden for radiologists. Now, in a new study, breast radiologists have demonstrated the use of AI for enhancing breast cancer screening performance and lowering the incidence of false-positive findings.
The retrospective study by researchers at the University of Copenhagen (Copenhagen, Denmark) evaluated changes in workload and screening outcomes before and after the implementation of AI. They compared two groups of women aged 50 to 69 who underwent biennial mammography screening in Denmark. In the first group, mammograms were read by two radiologists before AI implementation from October 2020 to November 2021. In the second group, from November 2021 to October 2022, mammograms were initially analyzed by AI.
Mammograms identified by AI as likely normal underwent a single-read by one of 19 specialized full-time breast radiologists. Those not flagged as normal were subjected to a double-read by two radiologists with AI-assisted decision support. The AI system employed, trained via deep learning models, was designed to identify and assess suspicious lesions and calcifications. All women screened were followed for at least 180 days to confirm any findings of invasive cancers or ductal carcinoma in situ (DCIS) via needle biopsy or surgical specimens.
Overall, 60,751 women were screened without AI and 58,246 with the AI system. In the AI group, 66.9% (38,977) of screenings were single-reads, and 33.1% (19,269) were double-reads with AI support. The use of AI led to the detection of more breast cancers (0.82% vs. 0.70%) and a reduction in false-positive rates (1.63% vs. 2.39%) compared to non-AI screening. The recall rate in the AI-screened group dropped by 20.5%, and radiologists’ reading workload decreased by 33.4%. The positive predictive value of screenings using AI was also higher (33.5% vs. 22.5%). Additionally, a greater proportion of the invasive cancers detected in the AI group were 1 centimeter or smaller in size (44.93% vs. 36.60%). Further research is necessary to assess long-term outcomes and confirm that overdiagnosis does not increase with AI use. The results of the study were published on June 4, 2024 in Radiology, a journal of the Radiological Society of North America (RSNA).
"Radiologists typically have access to the women's previous screening mammograms, but the AI system does not," said Andreas D. Lauritzen, Ph.D., a post-doctoral student at the University of Copenhagen. "That's something we'd like to work on in the future."
Latest Radiography News
- AI Helps Radiologists Spot More Lesions in Mammograms
- AI Detects Fatty Liver Disease from Chest X-Rays
- AI Detects Hidden Heart Disease in Existing CT Chest Scans
- Ultra-Lightweight AI Model Runs Without GPU to Break Barriers in Lung Cancer Diagnosis
- AI Radiology Tool Identifies Life-Threatening Conditions in Milliseconds
- Machine Learning Algorithm Identifies Cardiovascular Risk from Routine Bone Density Scans
- AI Improves Early Detection of Interval Breast Cancers
- World's Largest Class Single Crystal Diamond Radiation Detector Opens New Possibilities for Diagnostic Imaging
- AI-Powered Imaging Technique Shows Promise in Evaluating Patients for PCI
- Higher Chest X-Ray Usage Catches Lung Cancer Earlier and Improves Survival
- AI-Powered Mammograms Predict Cardiovascular Risk
- Generative AI Model Significantly Reduces Chest X-Ray Reading Time
- AI-Powered Mammography Screening Boosts Cancer Detection in Single-Reader Settings
- Photon Counting Detectors Promise Fast Color X-Ray Images
- AI Can Flag Mammograms for Supplemental MRI
- 3D CT Imaging from Single X-Ray Projection Reduces Radiation Exposure
Channels
MRI
view channel
AI Model Outperforms Doctors at Identifying Patients Most At-Risk of Cardiac Arrest
Hypertrophic cardiomyopathy is one of the most common inherited heart conditions and a leading cause of sudden cardiac death in young individuals and athletes. While many patients live normal lives, some... Read more
New MRI Technique Reveals Hidden Heart Issues
Traditional exercise stress tests conducted within an MRI machine require patients to lie flat, a position that artificially improves heart function by increasing stroke volume due to gravity-driven blood... Read moreUltrasound
view channel
Pain-Free Breast Imaging System Performs One Minute Cancer Scan
Breast cancer is one of the leading causes of death for women worldwide, and early detection is key to improving outcomes. Traditional methods like mammograms and ultrasound have their limitations, particularly... Read more
Wireless Chronic Pain Management Device to Reduce Need for Painkillers and Surgery
Chronic pain affects millions of people globally, often leading to long-term disability and dependence on opioid medications, which carry significant risks of side effects and addiction.... Read moreNuclear Medicine
view channel
Novel Bacteria-Specific PET Imaging Approach Detects Hard-To-Diagnose Lung Infections
Mycobacteroides abscessus is a rapidly growing mycobacteria that primarily affects immunocompromised patients and those with underlying lung diseases, such as cystic fibrosis or chronic obstructive pulmonary... Read more
New Imaging Approach Could Reduce Need for Biopsies to Monitor Prostate Cancer
Prostate cancer is the second leading cause of cancer-related death among men in the United States. However, the majority of older men diagnosed with prostate cancer have slow-growing, low-risk forms of... Read moreGeneral/Advanced Imaging
view channel
CT Colonography Beats Stool DNA Testing for Colon Cancer Screening
As colorectal cancer remains the second leading cause of cancer-related deaths worldwide, early detection through screening is vital to reduce advanced-stage treatments and associated costs.... Read more
First-Of-Its-Kind Wearable Device Offers Revolutionary Alternative to CT Scans
Currently, patients with conditions such as heart failure, pneumonia, or respiratory distress often require multiple imaging procedures that are intermittent, disruptive, and involve high levels of radiation.... Read more
AI-Based CT Scan Analysis Predicts Early-Stage Kidney Damage Due to Cancer Treatments
Radioligand therapy, a form of targeted nuclear medicine, has recently gained attention for its potential in treating specific types of tumors. However, one of the potential side effects of this therapy... Read moreImaging IT
view channel
New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible
Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Global AI in Medical Diagnostics Market to Be Driven by Demand for Image Recognition in Radiology
The global artificial intelligence (AI) in medical diagnostics market is expanding with early disease detection being one of its key applications and image recognition becoming a compelling consumer proposition... Read moreIndustry News
view channel
GE HealthCare and NVIDIA Collaboration to Reimagine Diagnostic Imaging
GE HealthCare (Chicago, IL, USA) has entered into a collaboration with NVIDIA (Santa Clara, CA, USA), expanding the existing relationship between the two companies to focus on pioneering innovation in... Read more
Patient-Specific 3D-Printed Phantoms Transform CT Imaging
New research has highlighted how anatomically precise, patient-specific 3D-printed phantoms are proving to be scalable, cost-effective, and efficient tools in the development of new CT scan algorithms... Read more
Siemens and Sectra Collaborate on Enhancing Radiology Workflows
Siemens Healthineers (Forchheim, Germany) and Sectra (Linköping, Sweden) have entered into a collaboration aimed at enhancing radiologists' diagnostic capabilities and, in turn, improving patient care... Read more