AI Tools Increase Low-Dose CT Lung Nodule Specificity
By MedImaging International staff writers Posted on 02 Feb 2021 |

Image: AI identification of lung nodule matches or bests that of trained radiologists (Photo courtesy of iStock)
Combining artificial intelligence (AI) and lung imaging reporting and data system (Lung-RADS) scores can increase CT scan specificity without reducing sensitivity, according to a new study.
Researchers at the University of Saskatchewan (Saskatoon, Canada) conducted a study that performed secondary analysis of a known data set using an AI model developed by Google in 2019, and Lung-RADS classifications from six radiologists. They then compared them to assess a representative cohort of 3,197 baseline low-dose CT screening patients. To ensure the AI algorithm matched the 91% sensitivity level achieved by the providers, the researchers determined a 0.27 AI risk-score threshold, based on a 0-to-1 scale.
The results showed that the AI-informed management strategy achieved sensitivity and specificity of 91% and 96%, respectively, while the average sensitivity and specificity of the six radiologists using only Lung-RADS was 91% and 61%, respectively. Based on the AI management strategy, 0.2% of category 1 or 2 Lung-RADS classifications were upgraded to category 3, and 30% of category 3 or higher classifications were downgraded to category 2. The minimum net cost savings, based on 2019 U.S. Medicare physician fee schedule, was USD 72 per patient screened. The study was published on January 19, 2021, in Journal of the American College of Radiology.
“Using an AI risk score combined with Lung-RADS at baseline lung cancer screening may result in fewer follow-up investigations and substantial cost savings. Specificity could rise by more than fifty percent,” concluded lead author Scott Adams, MD, and colleagues. “Additional research for other AI thresholds could also beneficial, especially for Lung-RADS category 4 nodules. Ultimately, additional investigations could lead to AI algorithms being used in a similar way to what has been suggested for screening mammography.”
Lung-RADS is a quality assurance tool designed to standardize lung cancer screening CT reporting and management recommendations, reduce confusion in lung cancer screening CT interpretations, and facilitate outcome monitoring. It is modeled on the success of the Breast Imaging Reporting and Data System (BI-RADS), with the primary goal of minimizing variation in the management of CT-detected lung nodules so that screening can be implemented effectively in radiology practices.
Related Links:
University of Saskatchewan
Researchers at the University of Saskatchewan (Saskatoon, Canada) conducted a study that performed secondary analysis of a known data set using an AI model developed by Google in 2019, and Lung-RADS classifications from six radiologists. They then compared them to assess a representative cohort of 3,197 baseline low-dose CT screening patients. To ensure the AI algorithm matched the 91% sensitivity level achieved by the providers, the researchers determined a 0.27 AI risk-score threshold, based on a 0-to-1 scale.
The results showed that the AI-informed management strategy achieved sensitivity and specificity of 91% and 96%, respectively, while the average sensitivity and specificity of the six radiologists using only Lung-RADS was 91% and 61%, respectively. Based on the AI management strategy, 0.2% of category 1 or 2 Lung-RADS classifications were upgraded to category 3, and 30% of category 3 or higher classifications were downgraded to category 2. The minimum net cost savings, based on 2019 U.S. Medicare physician fee schedule, was USD 72 per patient screened. The study was published on January 19, 2021, in Journal of the American College of Radiology.
“Using an AI risk score combined with Lung-RADS at baseline lung cancer screening may result in fewer follow-up investigations and substantial cost savings. Specificity could rise by more than fifty percent,” concluded lead author Scott Adams, MD, and colleagues. “Additional research for other AI thresholds could also beneficial, especially for Lung-RADS category 4 nodules. Ultimately, additional investigations could lead to AI algorithms being used in a similar way to what has been suggested for screening mammography.”
Lung-RADS is a quality assurance tool designed to standardize lung cancer screening CT reporting and management recommendations, reduce confusion in lung cancer screening CT interpretations, and facilitate outcome monitoring. It is modeled on the success of the Breast Imaging Reporting and Data System (BI-RADS), with the primary goal of minimizing variation in the management of CT-detected lung nodules so that screening can be implemented effectively in radiology practices.
Related Links:
University of Saskatchewan
Latest Radiography News
- AI Helps Radiologists Spot More Lesions in Mammograms
- AI Detects Fatty Liver Disease from Chest X-Rays
- AI Detects Hidden Heart Disease in Existing CT Chest Scans
- Ultra-Lightweight AI Model Runs Without GPU to Break Barriers in Lung Cancer Diagnosis
- AI Radiology Tool Identifies Life-Threatening Conditions in Milliseconds
- Machine Learning Algorithm Identifies Cardiovascular Risk from Routine Bone Density Scans
- AI Improves Early Detection of Interval Breast Cancers
- World's Largest Class Single Crystal Diamond Radiation Detector Opens New Possibilities for Diagnostic Imaging
- AI-Powered Imaging Technique Shows Promise in Evaluating Patients for PCI
- Higher Chest X-Ray Usage Catches Lung Cancer Earlier and Improves Survival
- AI-Powered Mammograms Predict Cardiovascular Risk
- Generative AI Model Significantly Reduces Chest X-Ray Reading Time
- AI-Powered Mammography Screening Boosts Cancer Detection in Single-Reader Settings
- Photon Counting Detectors Promise Fast Color X-Ray Images
- AI Can Flag Mammograms for Supplemental MRI
- 3D CT Imaging from Single X-Ray Projection Reduces Radiation Exposure
Channels
MRI
view channel
AI Model Outperforms Doctors at Identifying Patients Most At-Risk of Cardiac Arrest
Hypertrophic cardiomyopathy is one of the most common inherited heart conditions and a leading cause of sudden cardiac death in young individuals and athletes. While many patients live normal lives, some... Read more
New MRI Technique Reveals Hidden Heart Issues
Traditional exercise stress tests conducted within an MRI machine require patients to lie flat, a position that artificially improves heart function by increasing stroke volume due to gravity-driven blood... Read moreUltrasound
view channel
Wireless Chronic Pain Management Device to Reduce Need for Painkillers and Surgery
Chronic pain affects millions of people globally, often leading to long-term disability and dependence on opioid medications, which carry significant risks of side effects and addiction.... Read more
New Medical Ultrasound Imaging Technique Enables ICU Bedside Monitoring
Ultrasound computed tomography (USCT) presents a safer alternative to imaging techniques like X-ray computed tomography (commonly known as CT or “CAT” scans) because it does not produce ionizing radiation.... Read moreNuclear Medicine
view channel
Novel Bacteria-Specific PET Imaging Approach Detects Hard-To-Diagnose Lung Infections
Mycobacteroides abscessus is a rapidly growing mycobacteria that primarily affects immunocompromised patients and those with underlying lung diseases, such as cystic fibrosis or chronic obstructive pulmonary... Read more
New Imaging Approach Could Reduce Need for Biopsies to Monitor Prostate Cancer
Prostate cancer is the second leading cause of cancer-related death among men in the United States. However, the majority of older men diagnosed with prostate cancer have slow-growing, low-risk forms of... Read moreGeneral/Advanced Imaging
view channel
CT Colonography Beats Stool DNA Testing for Colon Cancer Screening
As colorectal cancer remains the second leading cause of cancer-related deaths worldwide, early detection through screening is vital to reduce advanced-stage treatments and associated costs.... Read more
First-Of-Its-Kind Wearable Device Offers Revolutionary Alternative to CT Scans
Currently, patients with conditions such as heart failure, pneumonia, or respiratory distress often require multiple imaging procedures that are intermittent, disruptive, and involve high levels of radiation.... Read more
AI-Based CT Scan Analysis Predicts Early-Stage Kidney Damage Due to Cancer Treatments
Radioligand therapy, a form of targeted nuclear medicine, has recently gained attention for its potential in treating specific types of tumors. However, one of the potential side effects of this therapy... Read moreImaging IT
view channel
New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible
Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Global AI in Medical Diagnostics Market to Be Driven by Demand for Image Recognition in Radiology
The global artificial intelligence (AI) in medical diagnostics market is expanding with early disease detection being one of its key applications and image recognition becoming a compelling consumer proposition... Read moreIndustry News
view channel
GE HealthCare and NVIDIA Collaboration to Reimagine Diagnostic Imaging
GE HealthCare (Chicago, IL, USA) has entered into a collaboration with NVIDIA (Santa Clara, CA, USA), expanding the existing relationship between the two companies to focus on pioneering innovation in... Read more
Patient-Specific 3D-Printed Phantoms Transform CT Imaging
New research has highlighted how anatomically precise, patient-specific 3D-printed phantoms are proving to be scalable, cost-effective, and efficient tools in the development of new CT scan algorithms... Read more
Siemens and Sectra Collaborate on Enhancing Radiology Workflows
Siemens Healthineers (Forchheim, Germany) and Sectra (Linköping, Sweden) have entered into a collaboration aimed at enhancing radiologists' diagnostic capabilities and, in turn, improving patient care... Read more