Ultra-High Field Clinical MRI Scanner Now Available
By MedImaging International staff writers Posted on 26 Nov 2020 |

Image: The new SIGNA 7.0T MRI system (Photo courtesy of GE Healthcare)
A new 7T MRI with a magnet approximately five times more powerful than most clinical systems can image anatomy, function, metabolism, and microvasculature with extreme resolution and detail.
The GE Healthcare (GE; Little Chalfont, United Kingdom) SIGNA 7.0T system combines a broad range of advanced technology and imaging methods for both research and clinical purposes across a host of neurologic and musculoskeletal diseases. The system features GE UltraG gradient technology, a powerful whole-body gradient coil that meets the demands of ultra-high field imaging speed and resolution, advanced diffusion, and functional brain imaging.
This system also features the SIGNAWorks software platform with state-of-the-art applications, such as deep learning-based tools that include AIR x brain for automated slice positioning, and Silent MRI, which enables seamless protocol translation between GE MR systems. In addition, the SIGNA 7.0T is equipped with the Precision radiofrequency (RF) transmit and receive architecture, which enables improved image quality and parallel transmission. An advanced knee and cartilage module allows ultra-high-resolution anatomical visualization to measure quantitative changes in anatomy due to disease.
“We are thrilled to add SIGNA 7.0T to our portfolio. This new scanner is a critical tool in research for neurological disorders like Alzheimer’s disease and mild traumatic brain injury,” said Jie Xue, president and CEO of GE Healthcare MR. “Now clinicians will have access to the power of ultra-high field imaging combined with the ultra-high-performance gradients to translate research advances into new clinical diagnostic tools and potential treatment options.”
“We were immediately impressed with the quality and stability of the SIGNA 7.0T system,” said Professor Michela Tosetti, PhD, of the University of Pisa (Italy) , who scanned with the SIGNA 7.0T at GE Healthcare MR headquarters. “We are keen to upgrade our system to this new configuration, continuing our relationship with GE to realize the promise of this technology to meet our imaging goals.”
MRI scanners can have ultraweak, weak, medium, strong, and superstrong magnetic fields, as measured in Tesla units. Highest-quality scans are usually taken with the aid of superconducting magnetic systems that generate very strong magnetic fields, providing the highest image resolution. The high-field systems require liquid helium to keep the superconducting magnets cool.
The GE Healthcare (GE; Little Chalfont, United Kingdom) SIGNA 7.0T system combines a broad range of advanced technology and imaging methods for both research and clinical purposes across a host of neurologic and musculoskeletal diseases. The system features GE UltraG gradient technology, a powerful whole-body gradient coil that meets the demands of ultra-high field imaging speed and resolution, advanced diffusion, and functional brain imaging.
This system also features the SIGNAWorks software platform with state-of-the-art applications, such as deep learning-based tools that include AIR x brain for automated slice positioning, and Silent MRI, which enables seamless protocol translation between GE MR systems. In addition, the SIGNA 7.0T is equipped with the Precision radiofrequency (RF) transmit and receive architecture, which enables improved image quality and parallel transmission. An advanced knee and cartilage module allows ultra-high-resolution anatomical visualization to measure quantitative changes in anatomy due to disease.
“We are thrilled to add SIGNA 7.0T to our portfolio. This new scanner is a critical tool in research for neurological disorders like Alzheimer’s disease and mild traumatic brain injury,” said Jie Xue, president and CEO of GE Healthcare MR. “Now clinicians will have access to the power of ultra-high field imaging combined with the ultra-high-performance gradients to translate research advances into new clinical diagnostic tools and potential treatment options.”
“We were immediately impressed with the quality and stability of the SIGNA 7.0T system,” said Professor Michela Tosetti, PhD, of the University of Pisa (Italy) , who scanned with the SIGNA 7.0T at GE Healthcare MR headquarters. “We are keen to upgrade our system to this new configuration, continuing our relationship with GE to realize the promise of this technology to meet our imaging goals.”
MRI scanners can have ultraweak, weak, medium, strong, and superstrong magnetic fields, as measured in Tesla units. Highest-quality scans are usually taken with the aid of superconducting magnetic systems that generate very strong magnetic fields, providing the highest image resolution. The high-field systems require liquid helium to keep the superconducting magnets cool.
Latest MRI News
- AI Tool Tracks Effectiveness of Multiple Sclerosis Treatments Using Brain MRI Scans
- Ultra-Powerful MRI Scans Enable Life-Changing Surgery in Treatment-Resistant Epileptic Patients
- AI-Powered MRI Technology Improves Parkinson’s Diagnoses
- Biparametric MRI Combined with AI Enhances Detection of Clinically Significant Prostate Cancer
- First-Of-Its-Kind AI-Driven Brain Imaging Platform to Better Guide Stroke Treatment Options
- New Model Improves Comparison of MRIs Taken at Different Institutions
- Groundbreaking New Scanner Sees 'Previously Undetectable' Cancer Spread
- First-Of-Its-Kind Tool Analyzes MRI Scans to Measure Brain Aging
- AI-Enhanced MRI Images Make Cancerous Breast Tissue Glow
- AI Model Automatically Segments MRI Images
- New Research Supports Routine Brain MRI Screening in Asymptomatic Late-Stage Breast Cancer Patients
- Revolutionary Portable Device Performs Rapid MRI-Based Stroke Imaging at Patient's Bedside
- AI Predicts After-Effects of Brain Tumor Surgery from MRI Scans
- MRI-First Strategy for Prostate Cancer Detection Proven Safe
- First-Of-Its-Kind 10' x 48' Mobile MRI Scanner Transforms User and Patient Experience
- New Model Makes MRI More Accurate and Reliable
Channels
Radiography
view channel
World's Largest Class Single Crystal Diamond Radiation Detector Opens New Possibilities for Diagnostic Imaging
Diamonds possess ideal physical properties for radiation detection, such as exceptional thermal and chemical stability along with a quick response time. Made of carbon with an atomic number of six, diamonds... Read more
AI-Powered Imaging Technique Shows Promise in Evaluating Patients for PCI
Percutaneous coronary intervention (PCI), also known as coronary angioplasty, is a minimally invasive procedure where small metal tubes called stents are inserted into partially blocked coronary arteries... Read moreUltrasound
view channel
AI Identifies Heart Valve Disease from Common Imaging Test
Tricuspid regurgitation is a condition where the heart's tricuspid valve does not close completely during contraction, leading to backward blood flow, which can result in heart failure. A new artificial... Read more
Novel Imaging Method Enables Early Diagnosis and Treatment Monitoring of Type 2 Diabetes
Type 2 diabetes is recognized as an autoimmune inflammatory disease, where chronic inflammation leads to alterations in pancreatic islet microvasculature, a key factor in β-cell dysfunction.... Read moreNuclear Medicine
view channel
Novel PET Imaging Approach Offers Never-Before-Seen View of Neuroinflammation
COX-2, an enzyme that plays a key role in brain inflammation, can be significantly upregulated by inflammatory stimuli and neuroexcitation. Researchers suggest that COX-2 density in the brain could serve... Read more
Novel Radiotracer Identifies Biomarker for Triple-Negative Breast Cancer
Triple-negative breast cancer (TNBC), which represents 15-20% of all breast cancer cases, is one of the most aggressive subtypes, with a five-year survival rate of about 40%. Due to its significant heterogeneity... Read moreGeneral/Advanced Imaging
view channel
AI-Powered Imaging System Improves Lung Cancer Diagnosis
Given the need to detect lung cancer at earlier stages, there is an increasing need for a definitive diagnostic pathway for patients with suspicious pulmonary nodules. However, obtaining tissue samples... Read more
AI Model Significantly Enhances Low-Dose CT Capabilities
Lung cancer remains one of the most challenging diseases, making early diagnosis vital for effective treatment. Fortunately, advancements in artificial intelligence (AI) are revolutionizing lung cancer... Read moreImaging IT
view channel
New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible
Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Global AI in Medical Diagnostics Market to Be Driven by Demand for Image Recognition in Radiology
The global artificial intelligence (AI) in medical diagnostics market is expanding with early disease detection being one of its key applications and image recognition becoming a compelling consumer proposition... Read moreIndustry News
view channel
GE HealthCare and NVIDIA Collaboration to Reimagine Diagnostic Imaging
GE HealthCare (Chicago, IL, USA) has entered into a collaboration with NVIDIA (Santa Clara, CA, USA), expanding the existing relationship between the two companies to focus on pioneering innovation in... Read more
Patient-Specific 3D-Printed Phantoms Transform CT Imaging
New research has highlighted how anatomically precise, patient-specific 3D-printed phantoms are proving to be scalable, cost-effective, and efficient tools in the development of new CT scan algorithms... Read more
Siemens and Sectra Collaborate on Enhancing Radiology Workflows
Siemens Healthineers (Forchheim, Germany) and Sectra (Linköping, Sweden) have entered into a collaboration aimed at enhancing radiologists' diagnostic capabilities and, in turn, improving patient care... Read more