Fujifilm and IU School of Medicine to Study AI in Diagnostic Imaging
By MedImaging International staff writers Posted on 12 Sep 2018 |

Image: Researchers are working to develop the application of AI in medical imaging diagnostics (Photo courtesy of Digital Health).
Fujifilm Corporation (Tokyo, Japan) has entered into a joint research agreement with Indiana University School of Medicine (Indianapolis, IN, USA) to develop the application of artificial intelligence (AI) in medical imaging diagnostic support systems.
Going forward, as clinical information is increasingly viewed in the context of big data, AI technology will be applied to develop products that meet the different and challenging needs of the healthcare industry. For instance, recent technological advancements in diagnostic imaging system capabilities, such as multi-slice CT, have created the need for an efficient solution to read and interpret the increased number of images being generated. The application of AI technology to support physicians by detecting suspicious lesions in images, comparing results with prior studies and the implementation of semi-automated reporting is expected to significantly increase the efficiency of diagnostic medical imaging in patient care.
Fujifilm is using AI technology to develop image diagnosis support systems, which will support the overall diagnostic workflow of physicians. In addition to undertaking various in-house development projects, Fujifilm is also entering into a partnership with leading AI technology vendors to expand the disease coverage of its systems. The Indiana University School of Medicine is affiliated with Indiana University Health (IU Health), a medical healthcare system with 17 hospitals and about 33,000 employees in the US.
The collaboration aims to combine Fujifilm’s image processing and AI technology with the Indiana University School of Medicine’s rich diagnostic and clinical expertise to develop medical AI technology, while searching for a system optimized to support diagnosis workflow. The research will initially utilize Fujifilm’s AI technology to segment and quantify muscle atrophy (sarcopenia) in body images, as well as detect and quantify brain lesions in neuroradiology imaging exams.
Going forward, as clinical information is increasingly viewed in the context of big data, AI technology will be applied to develop products that meet the different and challenging needs of the healthcare industry. For instance, recent technological advancements in diagnostic imaging system capabilities, such as multi-slice CT, have created the need for an efficient solution to read and interpret the increased number of images being generated. The application of AI technology to support physicians by detecting suspicious lesions in images, comparing results with prior studies and the implementation of semi-automated reporting is expected to significantly increase the efficiency of diagnostic medical imaging in patient care.
Fujifilm is using AI technology to develop image diagnosis support systems, which will support the overall diagnostic workflow of physicians. In addition to undertaking various in-house development projects, Fujifilm is also entering into a partnership with leading AI technology vendors to expand the disease coverage of its systems. The Indiana University School of Medicine is affiliated with Indiana University Health (IU Health), a medical healthcare system with 17 hospitals and about 33,000 employees in the US.
The collaboration aims to combine Fujifilm’s image processing and AI technology with the Indiana University School of Medicine’s rich diagnostic and clinical expertise to develop medical AI technology, while searching for a system optimized to support diagnosis workflow. The research will initially utilize Fujifilm’s AI technology to segment and quantify muscle atrophy (sarcopenia) in body images, as well as detect and quantify brain lesions in neuroradiology imaging exams.
Latest Imaging IT News
- New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible
- Global AI in Medical Diagnostics Market to Be Driven by Demand for Image Recognition in Radiology
- AI-Based Mammography Triage Software Helps Dramatically Improve Interpretation Process
- Artificial Intelligence (AI) Program Accurately Predicts Lung Cancer Risk from CT Images
- Image Management Platform Streamlines Treatment Plans
- AI-Based Technology for Ultrasound Image Analysis Receives FDA Approval
- AI Technology for Detecting Breast Cancer Receives CE Mark Approval
- Digital Pathology Software Improves Workflow Efficiency
- Patient-Centric Portal Facilitates Direct Imaging Access
- New Workstation Supports Customer-Driven Imaging Workflow
Channels
Radiography
view channel
AI Hybrid Strategy Improves Mammogram Interpretation
Breast cancer screening programs rely heavily on radiologists interpreting mammograms, a process that is time-intensive and subject to errors. While artificial intelligence (AI) models have shown strong... Read more
AI Technology Predicts Personalized Five-Year Risk of Developing Breast Cancer
Breast cancer remains one of the most common cancers among women, with about one in eight receiving a diagnosis in their lifetime. Despite widespread use of mammography, about 34% of patients in the U.... Read moreMRI
view channel
AI-Assisted Model Enhances MRI Heart Scans
A cardiac MRI can reveal critical information about the heart’s function and any abnormalities, but traditional scans take 30 to 90 minutes and often suffer from poor image quality due to patient movement.... Read more
AI Model Outperforms Doctors at Identifying Patients Most At-Risk of Cardiac Arrest
Hypertrophic cardiomyopathy is one of the most common inherited heart conditions and a leading cause of sudden cardiac death in young individuals and athletes. While many patients live normal lives, some... Read moreUltrasound
view channel
Non-Invasive Ultrasound-Based Tool Accurately Detects Infant Meningitis
Meningitis, an inflammation of the membranes surrounding the brain and spinal cord, can be fatal in infants if not diagnosed and treated early. Even when treated, it may leave lasting damage, such as cognitive... Read more
Breakthrough Deep Learning Model Enhances Handheld 3D Medical Imaging
Ultrasound imaging is a vital diagnostic technique used to visualize internal organs and tissues in real time and to guide procedures such as biopsies and injections. When paired with photoacoustic imaging... Read moreNuclear Medicine
view channel
New Camera Sees Inside Human Body for Enhanced Scanning and Diagnosis
Nuclear medicine scans like single-photon emission computed tomography (SPECT) allow doctors to observe heart function, track blood flow, and detect hidden diseases. However, current detectors are either... Read more
Novel Bacteria-Specific PET Imaging Approach Detects Hard-To-Diagnose Lung Infections
Mycobacteroides abscessus is a rapidly growing mycobacteria that primarily affects immunocompromised patients and those with underlying lung diseases, such as cystic fibrosis or chronic obstructive pulmonary... Read moreGeneral/Advanced Imaging
view channel
Extending CT Imaging Detects Hidden Blood Clots in Stroke Patients
Strokes caused by blood clots or other mechanisms that obstruct blood flow in the brain account for about 85% of all strokes. Determining where a clot originates is crucial, since it guides safe and effective... Read more
Groundbreaking AI Model Accurately Segments Liver Tumors from CT Scans
Liver cancer is the sixth most common cancer worldwide and a leading cause of cancer-related deaths. Accurate segmentation of liver tumors is critical for diagnosis and therapy, but manual methods by radiologists... Read more
New CT-Based Indicator Helps Predict Life-Threatening Postpartum Bleeding Cases
Postpartum hemorrhage (PPH) is a leading cause of maternal death worldwide. While most cases can be controlled with medications and basic interventions, some become life-threatening and require invasive treatments.... Read moreImaging IT
view channel
New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible
Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more