Fujifilm and IU School of Medicine to Study AI in Diagnostic Imaging
|
By MedImaging International staff writers Posted on 12 Sep 2018 |

Image: Researchers are working to develop the application of AI in medical imaging diagnostics (Photo courtesy of Digital Health).
Fujifilm Corporation (Tokyo, Japan) has entered into a joint research agreement with Indiana University School of Medicine (Indianapolis, IN, USA) to develop the application of artificial intelligence (AI) in medical imaging diagnostic support systems.
Going forward, as clinical information is increasingly viewed in the context of big data, AI technology will be applied to develop products that meet the different and challenging needs of the healthcare industry. For instance, recent technological advancements in diagnostic imaging system capabilities, such as multi-slice CT, have created the need for an efficient solution to read and interpret the increased number of images being generated. The application of AI technology to support physicians by detecting suspicious lesions in images, comparing results with prior studies and the implementation of semi-automated reporting is expected to significantly increase the efficiency of diagnostic medical imaging in patient care.
Fujifilm is using AI technology to develop image diagnosis support systems, which will support the overall diagnostic workflow of physicians. In addition to undertaking various in-house development projects, Fujifilm is also entering into a partnership with leading AI technology vendors to expand the disease coverage of its systems. The Indiana University School of Medicine is affiliated with Indiana University Health (IU Health), a medical healthcare system with 17 hospitals and about 33,000 employees in the US.
The collaboration aims to combine Fujifilm’s image processing and AI technology with the Indiana University School of Medicine’s rich diagnostic and clinical expertise to develop medical AI technology, while searching for a system optimized to support diagnosis workflow. The research will initially utilize Fujifilm’s AI technology to segment and quantify muscle atrophy (sarcopenia) in body images, as well as detect and quantify brain lesions in neuroradiology imaging exams.
Going forward, as clinical information is increasingly viewed in the context of big data, AI technology will be applied to develop products that meet the different and challenging needs of the healthcare industry. For instance, recent technological advancements in diagnostic imaging system capabilities, such as multi-slice CT, have created the need for an efficient solution to read and interpret the increased number of images being generated. The application of AI technology to support physicians by detecting suspicious lesions in images, comparing results with prior studies and the implementation of semi-automated reporting is expected to significantly increase the efficiency of diagnostic medical imaging in patient care.
Fujifilm is using AI technology to develop image diagnosis support systems, which will support the overall diagnostic workflow of physicians. In addition to undertaking various in-house development projects, Fujifilm is also entering into a partnership with leading AI technology vendors to expand the disease coverage of its systems. The Indiana University School of Medicine is affiliated with Indiana University Health (IU Health), a medical healthcare system with 17 hospitals and about 33,000 employees in the US.
The collaboration aims to combine Fujifilm’s image processing and AI technology with the Indiana University School of Medicine’s rich diagnostic and clinical expertise to develop medical AI technology, while searching for a system optimized to support diagnosis workflow. The research will initially utilize Fujifilm’s AI technology to segment and quantify muscle atrophy (sarcopenia) in body images, as well as detect and quantify brain lesions in neuroradiology imaging exams.
Latest Imaging IT News
- New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible
- Global AI in Medical Diagnostics Market to Be Driven by Demand for Image Recognition in Radiology
- AI-Based Mammography Triage Software Helps Dramatically Improve Interpretation Process
- Artificial Intelligence (AI) Program Accurately Predicts Lung Cancer Risk from CT Images
- Image Management Platform Streamlines Treatment Plans
- AI-Based Technology for Ultrasound Image Analysis Receives FDA Approval
- AI Technology for Detecting Breast Cancer Receives CE Mark Approval
- Digital Pathology Software Improves Workflow Efficiency
- Patient-Centric Portal Facilitates Direct Imaging Access
- New Workstation Supports Customer-Driven Imaging Workflow
Channels
Radiography
view channel
AI Generates Future Knee X-Rays to Predict Osteoarthritis Progression Risk
Osteoarthritis, a degenerative joint disease affecting over 500 million people worldwide, is the leading cause of disability among older adults. Current diagnostic tools allow doctors to assess damage... Read more
AI Algorithm Uses Mammograms to Accurately Predict Cardiovascular Risk in Women
Cardiovascular disease remains the leading cause of death in women worldwide, responsible for about nine million deaths annually. Despite this burden, symptoms and risk factors are often under-recognized... Read moreMRI
view channel
AI-Assisted Model Enhances MRI Heart Scans
A cardiac MRI can reveal critical information about the heart’s function and any abnormalities, but traditional scans take 30 to 90 minutes and often suffer from poor image quality due to patient movement.... Read more
AI Model Outperforms Doctors at Identifying Patients Most At-Risk of Cardiac Arrest
Hypertrophic cardiomyopathy is one of the most common inherited heart conditions and a leading cause of sudden cardiac death in young individuals and athletes. While many patients live normal lives, some... Read moreUltrasound
view channel
Ultrasound Probe Images Entire Organ in 4D
Disorders of blood microcirculation can have devastating effects, contributing to heart failure, kidney failure, and chronic diseases. However, existing imaging technologies cannot visualize the full network... Read more
Disposable Ultrasound Patch Performs Better Than Existing Devices
Wearable ultrasound devices are widely used in diagnostics, rehabilitation monitoring, and telemedicine, yet most existing models rely on lead-based piezoelectric ceramics that pose health and environmental risks.... Read moreNuclear Medicine
view channel
New Imaging Solution Improves Survival for Patients with Recurring Prostate Cancer
Detecting recurrent prostate cancer remains one of the most difficult challenges in oncology, as standard imaging methods such as bone scans and CT scans often fail to accurately locate small or early-stage tumors.... Read more
PET Tracer Enables Same-Day Imaging of Triple-Negative Breast and Urothelial Cancers
Triple-negative breast cancer (TNBC) and urothelial bladder carcinoma (UBC) are aggressive cancers often diagnosed at advanced stages, leaving limited time for effective treatment decisions.... Read more
New Camera Sees Inside Human Body for Enhanced Scanning and Diagnosis
Nuclear medicine scans like single-photon emission computed tomography (SPECT) allow doctors to observe heart function, track blood flow, and detect hidden diseases. However, current detectors are either... Read more
Novel Bacteria-Specific PET Imaging Approach Detects Hard-To-Diagnose Lung Infections
Mycobacteroides abscessus is a rapidly growing mycobacteria that primarily affects immunocompromised patients and those with underlying lung diseases, such as cystic fibrosis or chronic obstructive pulmonary... Read moreGeneral/Advanced Imaging
view channel
New Ultrasmall, Light-Sensitive Nanoparticles Could Serve as Contrast Agents
Medical imaging technologies face ongoing challenges in capturing accurate, detailed views of internal processes, especially in conditions like cancer, where tracking disease development and treatment... Read more
AI Algorithm Accurately Predicts Pancreatic Cancer Metastasis Using Routine CT Images
In pancreatic cancer, detecting whether the disease has spread to other organs is critical for determining whether surgery is appropriate. If metastasis is present, surgery is not recommended, yet current... Read moreImaging IT
view channel
New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible
Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more







