Fujifilm and IU School of Medicine to Study AI in Diagnostic Imaging
By MedImaging International staff writers Posted on 12 Sep 2018 |

Image: Researchers are working to develop the application of AI in medical imaging diagnostics (Photo courtesy of Digital Health).
Fujifilm Corporation (Tokyo, Japan) has entered into a joint research agreement with Indiana University School of Medicine (Indianapolis, IN, USA) to develop the application of artificial intelligence (AI) in medical imaging diagnostic support systems.
Going forward, as clinical information is increasingly viewed in the context of big data, AI technology will be applied to develop products that meet the different and challenging needs of the healthcare industry. For instance, recent technological advancements in diagnostic imaging system capabilities, such as multi-slice CT, have created the need for an efficient solution to read and interpret the increased number of images being generated. The application of AI technology to support physicians by detecting suspicious lesions in images, comparing results with prior studies and the implementation of semi-automated reporting is expected to significantly increase the efficiency of diagnostic medical imaging in patient care.
Fujifilm is using AI technology to develop image diagnosis support systems, which will support the overall diagnostic workflow of physicians. In addition to undertaking various in-house development projects, Fujifilm is also entering into a partnership with leading AI technology vendors to expand the disease coverage of its systems. The Indiana University School of Medicine is affiliated with Indiana University Health (IU Health), a medical healthcare system with 17 hospitals and about 33,000 employees in the US.
The collaboration aims to combine Fujifilm’s image processing and AI technology with the Indiana University School of Medicine’s rich diagnostic and clinical expertise to develop medical AI technology, while searching for a system optimized to support diagnosis workflow. The research will initially utilize Fujifilm’s AI technology to segment and quantify muscle atrophy (sarcopenia) in body images, as well as detect and quantify brain lesions in neuroradiology imaging exams.
Going forward, as clinical information is increasingly viewed in the context of big data, AI technology will be applied to develop products that meet the different and challenging needs of the healthcare industry. For instance, recent technological advancements in diagnostic imaging system capabilities, such as multi-slice CT, have created the need for an efficient solution to read and interpret the increased number of images being generated. The application of AI technology to support physicians by detecting suspicious lesions in images, comparing results with prior studies and the implementation of semi-automated reporting is expected to significantly increase the efficiency of diagnostic medical imaging in patient care.
Fujifilm is using AI technology to develop image diagnosis support systems, which will support the overall diagnostic workflow of physicians. In addition to undertaking various in-house development projects, Fujifilm is also entering into a partnership with leading AI technology vendors to expand the disease coverage of its systems. The Indiana University School of Medicine is affiliated with Indiana University Health (IU Health), a medical healthcare system with 17 hospitals and about 33,000 employees in the US.
The collaboration aims to combine Fujifilm’s image processing and AI technology with the Indiana University School of Medicine’s rich diagnostic and clinical expertise to develop medical AI technology, while searching for a system optimized to support diagnosis workflow. The research will initially utilize Fujifilm’s AI technology to segment and quantify muscle atrophy (sarcopenia) in body images, as well as detect and quantify brain lesions in neuroradiology imaging exams.
Latest Imaging IT News
- New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible
- Global AI in Medical Diagnostics Market to Be Driven by Demand for Image Recognition in Radiology
- AI-Based Mammography Triage Software Helps Dramatically Improve Interpretation Process
- Artificial Intelligence (AI) Program Accurately Predicts Lung Cancer Risk from CT Images
- Image Management Platform Streamlines Treatment Plans
- AI-Based Technology for Ultrasound Image Analysis Receives FDA Approval
- AI Technology for Detecting Breast Cancer Receives CE Mark Approval
- Digital Pathology Software Improves Workflow Efficiency
- Patient-Centric Portal Facilitates Direct Imaging Access
- New Workstation Supports Customer-Driven Imaging Workflow
Channels
Radiography
view channel
AI Detects Fatty Liver Disease from Chest X-Rays
Fatty liver disease, which results from excess fat accumulation in the liver, is believed to impact approximately one in four individuals globally. If not addressed in time, it can progress to severe conditions... Read more
AI Detects Hidden Heart Disease in Existing CT Chest Scans
Coronary artery calcium (CAC) is a major indicator of cardiovascular risk, but its assessment typically requires a specialized “gated” CT scan that synchronizes with the heartbeat. In contrast, most chest... Read moreMRI
view channel
AI Model Outperforms Doctors at Identifying Patients Most At-Risk of Cardiac Arrest
Hypertrophic cardiomyopathy is one of the most common inherited heart conditions and a leading cause of sudden cardiac death in young individuals and athletes. While many patients live normal lives, some... Read more
New MRI Technique Reveals Hidden Heart Issues
Traditional exercise stress tests conducted within an MRI machine require patients to lie flat, a position that artificially improves heart function by increasing stroke volume due to gravity-driven blood... Read moreUltrasound
view channel
Wireless Chronic Pain Management Device to Reduce Need for Painkillers and Surgery
Chronic pain affects millions of people globally, often leading to long-term disability and dependence on opioid medications, which carry significant risks of side effects and addiction.... Read more
New Medical Ultrasound Imaging Technique Enables ICU Bedside Monitoring
Ultrasound computed tomography (USCT) presents a safer alternative to imaging techniques like X-ray computed tomography (commonly known as CT or “CAT” scans) because it does not produce ionizing radiation.... Read moreNuclear Medicine
view channel
Novel Bacteria-Specific PET Imaging Approach Detects Hard-To-Diagnose Lung Infections
Mycobacteroides abscessus is a rapidly growing mycobacteria that primarily affects immunocompromised patients and those with underlying lung diseases, such as cystic fibrosis or chronic obstructive pulmonary... Read more
New Imaging Approach Could Reduce Need for Biopsies to Monitor Prostate Cancer
Prostate cancer is the second leading cause of cancer-related death among men in the United States. However, the majority of older men diagnosed with prostate cancer have slow-growing, low-risk forms of... Read moreGeneral/Advanced Imaging
view channel
CT Colonography Beats Stool DNA Testing for Colon Cancer Screening
As colorectal cancer remains the second leading cause of cancer-related deaths worldwide, early detection through screening is vital to reduce advanced-stage treatments and associated costs.... Read more
First-Of-Its-Kind Wearable Device Offers Revolutionary Alternative to CT Scans
Currently, patients with conditions such as heart failure, pneumonia, or respiratory distress often require multiple imaging procedures that are intermittent, disruptive, and involve high levels of radiation.... Read more
AI-Based CT Scan Analysis Predicts Early-Stage Kidney Damage Due to Cancer Treatments
Radioligand therapy, a form of targeted nuclear medicine, has recently gained attention for its potential in treating specific types of tumors. However, one of the potential side effects of this therapy... Read moreImaging IT
view channel
New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible
Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more