We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

MedImaging

Download Mobile App
Recent News Radiography MRI Ultrasound Nuclear Medicine General/Advanced Imaging Imaging IT Industry News

Cancer Detection Improved with New Image Analysis Technique

By MedImaging International staff writers
Posted on 02 Mar 2015
Print article
Researchers developed a novel image-analysis technique designed to improve breast cancer detection and diagnosis.

The goal of the team was to develop a new quantitative image analysis technique to improve prediction of cancer risk, or cancer prognosis, and help find more effective cancer screening and treatment strategies. To this end, the team built image processing algorithms that could analyze multiple digital X-ray images, and build statistical data learning-based prediction models, to generate quantitative image markers.

The research team was led by Dr. Bin Zheng, electrical and computer engineering professor at the University of Oklahoma, College of Engineering (Norman, OK, USA).

Breast cancer screening, for example includes risk factors such as age, family cancer history, lifestyle, breast density, and results from tests for common susceptible cancer gene mutations. These risk factors are reviewed and are used to cancer risk assessment models. These models are then applied in epidemiology studies.

Using the new models, only a small number of those women in the near-term high-risk category would be screened more frequently. Those with average or lower near-term risk of developing cancer would be screened less frequently, allowing radiologists to focus on women in the high-risk group. A smaller number of women screened annually also reduce the risk of false-positive recalls in those women with low near-term cancer risk.

Prof. Bin Zheng, said, “Our preliminary study results demonstrate that our new near-term risk prediction model based on a computer-aided detection scheme of four-view mammograms yielded a substantially higher discriminatory power than other existing known risk factors to predict near-term cancer risk.”

Related Links:

University of Oklahoma, College of Engineering 


New
Radiation Shielding
Oversize Thyroid Shield
New
Cylindrical Water Scanning System
SunSCAN 3D
NMUS & MSK Ultrasound
InVisus Pro
40/80-Slice CT System
uCT 528

Print article

Channels

MRI

view channel
Image: The AI tool can help interpret and assess how well treatments are working for MS patients (Photo courtesy of Shutterstock)

AI Tool Tracks Effectiveness of Multiple Sclerosis Treatments Using Brain MRI Scans

Multiple sclerosis (MS) is a condition in which the immune system attacks the brain and spinal cord, leading to impairments in movement, sensation, and cognition. Magnetic Resonance Imaging (MRI) markers... Read more