New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible
By MedImaging International staff writers Posted on 06 Oct 2022 |

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until now, these complex images have been highly dependent on humans to read. In addition, the number of images continues to grow, increasing the workload for radiologists and other healthcare professionals tasked with interpreting these images for clinicians and patients. Now, a new industry solution makes imaging healthcare data more accessible, interoperable and useful.
Google Cloud (Sunnyvale, CA, USA) enables the development of AI for imaging to support faster, more accurate diagnosis of images, increased productivity for healthcare workers, and improved care access and outcomes for patients. Google Cloud has announced its new Medical Imaging Suite that addresses common pain points organizations face in developing AI and machine learning models, and uses this to enable data interoperability. The components of the Medical Imaging Suite include:
Imaging Storage: Cloud Healthcare API, part of the Medical Imaging Suite, allows easy and secure data exchange using the international DICOMweb standard for imaging. Cloud Healthcare API provides a fully managed, highly scalable, enterprise-grade development environment and includes automated DICOM de-identification. Imaging technology partners include NetApp for seamless on-prem to cloud data management, and Change Healthcare, a cloud-native enterprise imaging PACS in clinical use by radiologists.
Imaging Lab: AI-assisted annotation tools from NVIDIA and MONAI help automate the highly manual and repetitive task of labeling medical images, and Google Cloud also offers native integration with any DICOMweb viewer.
Imaging Datasets & Dashboards: Organizations can use BigQuery and Looker to view and search petabytes of imaging data to perform advanced analytics and create training datasets with zero operational overhead.
Imaging AI Pipelines: Using Vertex AI on Google Cloud can accelerate development of AI pipelines to build scalable machine learning models, with 80 percent fewer lines of code required for custom modeling.
Imaging Deployment: Finally, the Medical Imaging Suite offers flexible options for cloud, on-prem, or edge deployment to allow organizations to meet diverse sovereignty, data security, and privacy requirements - while providing centralized management and policy enforcement with Google Distributed Cloud, enabled by Anthos.
Privacy and security are of the utmost importance in all aspects of Google Cloud's Medical Imaging Suite. Through the implementation of Google Cloud's reliable infrastructure and secure data storage that support HIPAA compliance - along with each customer's layers of security, privacy controls and processes - customers are able to protect the access and use of patient data. Google Cloud's ecosystem of delivery partners provides expert implementation of services for Medical Imaging Suite to help healthcare and life sciences organizations deploy at scale.
Hackensack Meridian Health (Edison, NJ, USA), a network of healthcare providers, is beginning to use the Medical Imaging Suite to de-identify petabytes of images with future plans to build AI algorithms to predict metastasis in patients with prostate cancer, a life-threatening outcome disproportionately affecting Black men in the U.S.
"We are working towards building AI capabilities that will support image-based clinical diagnosis across a range of imaging, and be an integral part of our clinical workflow," said Sameer Sethi, SVP and chief data and analytics officer at Hackensack Meridian Health. "Google Cloud's imaging capabilities, including standardized storage and de-identification, are helping us unlock the value of our imaging data so clinicians and researchers are equipped with digitized decision support that fits into their clinical workflow. Google's Medical Image Suite is also fundamental to us applying AI and machine learning to this data to predict and prevent disease, helping to save more lives."
Hologic, Inc. (Marlborough, MA, USA) has developed the first CE-marked digital cytology platform for laboratories, which combines a new AI algorithm for cervical cancer screening with advanced volumetric imaging technology. The platform helps cytologists and pathologists identify precancerous lesions and cervical cancer cells in women. Next, Hologic plans on expanding the platform's capabilities using the Medical Imaging Suite.
"We've partnered with Google Cloud to use the Medical Imaging Suite to enhance our current Genius Digital Diagnostics System," said Michael Quick, vice president of Research and Development, Innovation at Hologic. "By complementing our expertise in diagnostics and Al with Google Cloud's expertise in AI, deep learning, and its cloud-based technologies for imaging storage, we're evolving our market-leading technologies to improve laboratory performance, healthcare provider decision-making, and patient care."
Related Links:
Google Cloud
Hackensack Meridian Health
Hologic, Inc.
Latest Imaging IT News
- Global AI in Medical Diagnostics Market to Be Driven by Demand for Image Recognition in Radiology
- AI-Based Mammography Triage Software Helps Dramatically Improve Interpretation Process
- Artificial Intelligence (AI) Program Accurately Predicts Lung Cancer Risk from CT Images
- Image Management Platform Streamlines Treatment Plans
- AI-Based Technology for Ultrasound Image Analysis Receives FDA Approval
- AI Technology for Detecting Breast Cancer Receives CE Mark Approval
- Digital Pathology Software Improves Workflow Efficiency
- Patient-Centric Portal Facilitates Direct Imaging Access
- New Workstation Supports Customer-Driven Imaging Workflow
Channels
Radiography
view channel
World's Largest Class Single Crystal Diamond Radiation Detector Opens New Possibilities for Diagnostic Imaging
Diamonds possess ideal physical properties for radiation detection, such as exceptional thermal and chemical stability along with a quick response time. Made of carbon with an atomic number of six, diamonds... Read more
AI-Powered Imaging Technique Shows Promise in Evaluating Patients for PCI
Percutaneous coronary intervention (PCI), also known as coronary angioplasty, is a minimally invasive procedure where small metal tubes called stents are inserted into partially blocked coronary arteries... Read moreMRI
view channel
AI Tool Predicts Relapse of Pediatric Brain Cancer from Brain MRI Scans
Many pediatric gliomas are treatable with surgery alone, but relapses can be catastrophic. Predicting which patients are at risk for recurrence remains challenging, leading to frequent follow-ups with... Read more
AI Tool Tracks Effectiveness of Multiple Sclerosis Treatments Using Brain MRI Scans
Multiple sclerosis (MS) is a condition in which the immune system attacks the brain and spinal cord, leading to impairments in movement, sensation, and cognition. Magnetic Resonance Imaging (MRI) markers... Read more
Ultra-Powerful MRI Scans Enable Life-Changing Surgery in Treatment-Resistant Epileptic Patients
Approximately 360,000 individuals in the UK suffer from focal epilepsy, a condition in which seizures spread from one part of the brain. Around a third of these patients experience persistent seizures... Read moreUltrasound
view channel.jpeg)
AI-Powered Lung Ultrasound Outperforms Human Experts in Tuberculosis Diagnosis
Despite global declines in tuberculosis (TB) rates in previous years, the incidence of TB rose by 4.6% from 2020 to 2023. Early screening and rapid diagnosis are essential elements of the World Health... Read more
AI Identifies Heart Valve Disease from Common Imaging Test
Tricuspid regurgitation is a condition where the heart's tricuspid valve does not close completely during contraction, leading to backward blood flow, which can result in heart failure. A new artificial... Read moreNuclear Medicine
view channel
Novel Radiolabeled Antibody Improves Diagnosis and Treatment of Solid Tumors
Interleukin-13 receptor α-2 (IL13Rα2) is a cell surface receptor commonly found in solid tumors such as glioblastoma, melanoma, and breast cancer. It is minimally expressed in normal tissues, making it... Read more
Novel PET Imaging Approach Offers Never-Before-Seen View of Neuroinflammation
COX-2, an enzyme that plays a key role in brain inflammation, can be significantly upregulated by inflammatory stimuli and neuroexcitation. Researchers suggest that COX-2 density in the brain could serve... Read moreGeneral/Advanced Imaging
view channel
AI-Powered Imaging System Improves Lung Cancer Diagnosis
Given the need to detect lung cancer at earlier stages, there is an increasing need for a definitive diagnostic pathway for patients with suspicious pulmonary nodules. However, obtaining tissue samples... Read more
AI Model Significantly Enhances Low-Dose CT Capabilities
Lung cancer remains one of the most challenging diseases, making early diagnosis vital for effective treatment. Fortunately, advancements in artificial intelligence (AI) are revolutionizing lung cancer... Read moreIndustry News
view channel
GE HealthCare and NVIDIA Collaboration to Reimagine Diagnostic Imaging
GE HealthCare (Chicago, IL, USA) has entered into a collaboration with NVIDIA (Santa Clara, CA, USA), expanding the existing relationship between the two companies to focus on pioneering innovation in... Read more
Patient-Specific 3D-Printed Phantoms Transform CT Imaging
New research has highlighted how anatomically precise, patient-specific 3D-printed phantoms are proving to be scalable, cost-effective, and efficient tools in the development of new CT scan algorithms... Read more
Siemens and Sectra Collaborate on Enhancing Radiology Workflows
Siemens Healthineers (Forchheim, Germany) and Sectra (Linköping, Sweden) have entered into a collaboration aimed at enhancing radiologists' diagnostic capabilities and, in turn, improving patient care... Read more