We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

MedImaging

Download Mobile App
Recent News Radiography MRI Ultrasound Nuclear Medicine General/Advanced Imaging Imaging IT Industry News

Game-Changing Technology Uses Live X-Ray Images for Guiding Endovascular Surgery

By MedImaging International staff writers
Posted on 07 Jul 2022
Print article
Image: Cydar EV aids in planning and guiding endovascular surgery (Photo courtesy of Cydar Medical)
Image: Cydar EV aids in planning and guiding endovascular surgery (Photo courtesy of Cydar Medical)

Endovascular aneurysm repair (EVAR) is an alternative to open aortic surgery due to perceived advantages in patient survival, reduced post-operative complications and shorter hospital lengths of stay. Despite these potential advantages, there is still significant variability in pre-operative planning and sizing, problems associated with imprecise visualization and device positioning intra-operatively, and inconsistent patient outcomes. Now, a game-changing technology for vascular navigation aids in planning and guiding endovascular surgery and is simple to integrate with the existing imaging hardware that is already present in the hospital.

Cydar Medical’s (Cambridge, UK) Cydar EV is the first product from Cydar’s Intelligent Maps system. The patented computer vision automatically overlays the Map on the live X-ray imaging with exceptional accuracy and robustness. When guidewires and instruments deform the blood vessels, real-time imaging is used to update the Map to match the new, deformed anatomy. The result is an accurate, responsive 3D Map on the screen throughout a procedure.

During endovascular surgery, stiff guidewires often straighten, shorten and displace blood vessels. The surgeon uses grab handles positioned along virtual guide wires to adjust the shape of the 3D Map to match the real-time anatomy (non-rigid transformation). And, once adjusted, the system remembers that adjustment in 3D even when the X-ray set moves position. Toggling between the pre-operative map and the adjusted map helps the clinical team visualize how the anatomy has changed and position devices precisely. This reduces procedure length by 30-60 minutes in endovascular interventions and radiation exposure for clinical staff and patients is radically reduced, by 50% even in standard EVAR.

Cydar, in partnership with King’s College London (London, UK), has now initiated the ARIA Study: a randomized controlled trial to assess the clinical, technical and cost-effectiveness of a cloud-based, ARtificially Intelligent image fusion system in comparison to standard treatment to guide endovascular aortic aneurysm repair (ARIA). The randomized trial will enroll 340 patients in 10 sites across the UK with a clinical diagnosis of abdominal aortic or thoracoabdominal aortic aneurysm (AAA and TAAA respectively) suitable for endovascular treatment. The trial will follow patients for one year and assess the effect of Cydar EV Maps on clinical-, technical- and cost-effectiveness in comparison to standard treatment in endovascular aortic aneurysm repair, used for both standard and complex devices.

“Our central hypothesis is that digital technology - specifically cloud-computing and artificial intelligence (AI), can be used to assess and learn from large volumes of data to inform clinical decision making and has the potential to improve the predictability of individual patient outcomes and the consistency of outcomes in the NHS,” said Dr Rachel Clough, Principal Investigator of the ARIA Study and Clinical Senior Lecturer from King’s College London.

“Cydar EV Maps is a game-changing technology for vascular navigation. The ARIA study provides a unique opportunity to demonstrate the benefits like reduced procedure time and reduction to radiation exposure, although some of the more subtle benefits related to procedural quality and reduced operator fatigue may never be directly measured but are obvious as an operator,” said Dr. Simon Neequaye, Principal Investigator at the Liverpool University Hospital NHS Foundation Trust.

Related Links:
Cydar Medical 
King’s College London

Portable X-ray Unit
AJEX140H
New
Ultrasound-Guided Biopsy & Visualization Tools
Endoscopic Ultrasound (EUS) Guided Devices
Ultrasound Table
Women’s Ultrasound EA Table
New
MRI Infusion Workstation
BeneFusion MRI Station

Print article

Channels

Radiography

view channel
Image: AI can identify “mammographically-visible” types of interval cancers earlier by flagging them at the time of screening (Photo courtesy of ScreenPoint Medical)

AI Improves Early Detection of Interval Breast Cancers

Interval breast cancers, which occur between routine screenings, are easier to treat when detected earlier. Early detection can reduce the need for aggressive treatments and improve the chances of better outcomes.... Read more

Nuclear Medicine

view channel
Image: In vivo imaging of U-87 MG xenograft model with varying mass doses of 89Zr-labeled KLG-3 or isotype control (Photo courtesy of L Gajecki et al.; doi.org/10.2967/jnumed.124.268762)

Novel Radiolabeled Antibody Improves Diagnosis and Treatment of Solid Tumors

Interleukin-13 receptor α-2 (IL13Rα2) is a cell surface receptor commonly found in solid tumors such as glioblastoma, melanoma, and breast cancer. It is minimally expressed in normal tissues, making it... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more