New CT Scanner Uses AI to Automate Workflow
By MedImaging International staff writers Posted on 27 Oct 2021 |

Image: The all new Revolution Ascend CT scanner (Photo courtesy of GE Healthcare)
A collection of artificial intelligence (AI) technologies increase operational efficiency by simplifying time-consuming tasks.
The new GE Healthcare (GE; Chicago, IL, USA) Revolution Ascend offers a 75 cm wide-gantry, 40 mm detector coverage, and lower table position, increasing patient area inside the bore by 22%. The increased bore size accommodates high body mass index (BMI) patients, as well as trauma cases that would be too delicate to maneuver in a smaller gantry. Revolution Ascend also comes with GE Healthcare’s Effortless Workflow, a suite of AI solutions that personalize scans accurately and automatically for each patient, while requiring significantly less effort from the CT technologist.
It starts with the technologist using the system’s attached bar code reader to automatically pull up the patient’s information and suggest relevant protocols. With one click, the CT technologist can then initiate Auto Positioning, which uses real-time depth-sensing technology to generate a 3D model of the patient’s body, and a deep learning algorithm to determine correct table elevation and cradle movements to align the center of the scan range with the isocenter of the bore. Intelligent tools embedded in the Clarity Operator Environment provide optimal scan range settings, dose, and image quality.
In all, Effortless Workflow’s AI-based features streamline the entire CT process by automatically positioning patients with 94% auto centering accuracy; suggesting protocols with 90% accuracy; automating and expediting workflows with 66% reduction in clicks; saving 56% of time for scan settings and 21% for the entire exam; reducing up to 91% image noise at the same dose; and doubling spatial resolution. Revolution Ascend also uses a dedicated deep neural network to generate TrueFidelity CT Images to help improve reading confidence in a wide range of clinical applications.
“We designed Revolution Ascend with accessibility in mind. Not only does the system’s hardware help accommodate more patients with various physical limitations, but its cutting-edge AI also helps expedite exams so healthcare system schedules can accommodate additional patient scans,” said Jean-Luc Procaccini, President and CEO of molecular imaging & CT at GE Healthcare. “Altogether, Revolution Ascend with Effortless Workflow helps empower clinicians to reach the right diagnosis as efficiently and precisely as possible for more patients.”
“The most time-consuming part of the CT experience isn’t the scan itself, but the steps that fall outside the scan,” said Timothy Szczykutowicz, PhD, author of The CT Handbook: Optimizing Protocols for Today's Feature-Rich Scanners. “The scan itself only takes a few minutes and the remainder of the time is dedicated to patient prep, including positioning the patient and identifying the correct protocols and settings, plus image reconstruction and report time. Historically, these have been manual processes, putting them at risk of human error; AI offers new opportunities to automate workflows and expedite exams with the same or better results.”
Related Links:
GE Healthcare
The new GE Healthcare (GE; Chicago, IL, USA) Revolution Ascend offers a 75 cm wide-gantry, 40 mm detector coverage, and lower table position, increasing patient area inside the bore by 22%. The increased bore size accommodates high body mass index (BMI) patients, as well as trauma cases that would be too delicate to maneuver in a smaller gantry. Revolution Ascend also comes with GE Healthcare’s Effortless Workflow, a suite of AI solutions that personalize scans accurately and automatically for each patient, while requiring significantly less effort from the CT technologist.
It starts with the technologist using the system’s attached bar code reader to automatically pull up the patient’s information and suggest relevant protocols. With one click, the CT technologist can then initiate Auto Positioning, which uses real-time depth-sensing technology to generate a 3D model of the patient’s body, and a deep learning algorithm to determine correct table elevation and cradle movements to align the center of the scan range with the isocenter of the bore. Intelligent tools embedded in the Clarity Operator Environment provide optimal scan range settings, dose, and image quality.
In all, Effortless Workflow’s AI-based features streamline the entire CT process by automatically positioning patients with 94% auto centering accuracy; suggesting protocols with 90% accuracy; automating and expediting workflows with 66% reduction in clicks; saving 56% of time for scan settings and 21% for the entire exam; reducing up to 91% image noise at the same dose; and doubling spatial resolution. Revolution Ascend also uses a dedicated deep neural network to generate TrueFidelity CT Images to help improve reading confidence in a wide range of clinical applications.
“We designed Revolution Ascend with accessibility in mind. Not only does the system’s hardware help accommodate more patients with various physical limitations, but its cutting-edge AI also helps expedite exams so healthcare system schedules can accommodate additional patient scans,” said Jean-Luc Procaccini, President and CEO of molecular imaging & CT at GE Healthcare. “Altogether, Revolution Ascend with Effortless Workflow helps empower clinicians to reach the right diagnosis as efficiently and precisely as possible for more patients.”
“The most time-consuming part of the CT experience isn’t the scan itself, but the steps that fall outside the scan,” said Timothy Szczykutowicz, PhD, author of The CT Handbook: Optimizing Protocols for Today's Feature-Rich Scanners. “The scan itself only takes a few minutes and the remainder of the time is dedicated to patient prep, including positioning the patient and identifying the correct protocols and settings, plus image reconstruction and report time. Historically, these have been manual processes, putting them at risk of human error; AI offers new opportunities to automate workflows and expedite exams with the same or better results.”
Related Links:
GE Healthcare
Latest Radiography News
- AI Detects Fatty Liver Disease from Chest X-Rays
- AI Detects Hidden Heart Disease in Existing CT Chest Scans
- Ultra-Lightweight AI Model Runs Without GPU to Break Barriers in Lung Cancer Diagnosis
- AI Radiology Tool Identifies Life-Threatening Conditions in Milliseconds
- Machine Learning Algorithm Identifies Cardiovascular Risk from Routine Bone Density Scans
- AI Improves Early Detection of Interval Breast Cancers
- World's Largest Class Single Crystal Diamond Radiation Detector Opens New Possibilities for Diagnostic Imaging
- AI-Powered Imaging Technique Shows Promise in Evaluating Patients for PCI
- Higher Chest X-Ray Usage Catches Lung Cancer Earlier and Improves Survival
- AI-Powered Mammograms Predict Cardiovascular Risk
- Generative AI Model Significantly Reduces Chest X-Ray Reading Time
- AI-Powered Mammography Screening Boosts Cancer Detection in Single-Reader Settings
- Photon Counting Detectors Promise Fast Color X-Ray Images
- AI Can Flag Mammograms for Supplemental MRI
- 3D CT Imaging from Single X-Ray Projection Reduces Radiation Exposure
- AI Method Accurately Predicts Breast Cancer Risk by Analyzing Multiple Mammograms
Channels
MRI
view channel
AI Model Outperforms Doctors at Identifying Patients Most At-Risk of Cardiac Arrest
Hypertrophic cardiomyopathy is one of the most common inherited heart conditions and a leading cause of sudden cardiac death in young individuals and athletes. While many patients live normal lives, some... Read more
New MRI Technique Reveals Hidden Heart Issues
Traditional exercise stress tests conducted within an MRI machine require patients to lie flat, a position that artificially improves heart function by increasing stroke volume due to gravity-driven blood... Read moreUltrasound
view channel
Wireless Chronic Pain Management Device to Reduce Need for Painkillers and Surgery
Chronic pain affects millions of people globally, often leading to long-term disability and dependence on opioid medications, which carry significant risks of side effects and addiction.... Read more
New Medical Ultrasound Imaging Technique Enables ICU Bedside Monitoring
Ultrasound computed tomography (USCT) presents a safer alternative to imaging techniques like X-ray computed tomography (commonly known as CT or “CAT” scans) because it does not produce ionizing radiation.... Read moreNuclear Medicine
view channel
Novel Bacteria-Specific PET Imaging Approach Detects Hard-To-Diagnose Lung Infections
Mycobacteroides abscessus is a rapidly growing mycobacteria that primarily affects immunocompromised patients and those with underlying lung diseases, such as cystic fibrosis or chronic obstructive pulmonary... Read more
New Imaging Approach Could Reduce Need for Biopsies to Monitor Prostate Cancer
Prostate cancer is the second leading cause of cancer-related death among men in the United States. However, the majority of older men diagnosed with prostate cancer have slow-growing, low-risk forms of... Read moreGeneral/Advanced Imaging
view channel
CT Colonography Beats Stool DNA Testing for Colon Cancer Screening
As colorectal cancer remains the second leading cause of cancer-related deaths worldwide, early detection through screening is vital to reduce advanced-stage treatments and associated costs.... Read more
First-Of-Its-Kind Wearable Device Offers Revolutionary Alternative to CT Scans
Currently, patients with conditions such as heart failure, pneumonia, or respiratory distress often require multiple imaging procedures that are intermittent, disruptive, and involve high levels of radiation.... Read more
AI-Based CT Scan Analysis Predicts Early-Stage Kidney Damage Due to Cancer Treatments
Radioligand therapy, a form of targeted nuclear medicine, has recently gained attention for its potential in treating specific types of tumors. However, one of the potential side effects of this therapy... Read moreImaging IT
view channel
New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible
Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Global AI in Medical Diagnostics Market to Be Driven by Demand for Image Recognition in Radiology
The global artificial intelligence (AI) in medical diagnostics market is expanding with early disease detection being one of its key applications and image recognition becoming a compelling consumer proposition... Read moreIndustry News
view channel
GE HealthCare and NVIDIA Collaboration to Reimagine Diagnostic Imaging
GE HealthCare (Chicago, IL, USA) has entered into a collaboration with NVIDIA (Santa Clara, CA, USA), expanding the existing relationship between the two companies to focus on pioneering innovation in... Read more
Patient-Specific 3D-Printed Phantoms Transform CT Imaging
New research has highlighted how anatomically precise, patient-specific 3D-printed phantoms are proving to be scalable, cost-effective, and efficient tools in the development of new CT scan algorithms... Read more
Siemens and Sectra Collaborate on Enhancing Radiology Workflows
Siemens Healthineers (Forchheim, Germany) and Sectra (Linköping, Sweden) have entered into a collaboration aimed at enhancing radiologists' diagnostic capabilities and, in turn, improving patient care... Read more