AI-Based Mammography Triage Software Helps Dramatically Improve Interpretation Process
|
By MedImaging International staff writers Posted on 11 Oct 2021 |

An artificial intelligence (AI)-based mammography triage software is helping dramatically improve the interpretation process for healthcare providers.
In a new study, researchers at the Scripps Green Hospital (La Jolla, CA, USA) showed how the use of an AI-based computer-aided detection (CAD) and triage software suite improved the mammographic interpretation process at an imaging center and its partners. Mammographic results can be delayed for many reasons, including physician shortages. Many women experience anxiety waiting for their mammographic results, with 97% of women in one study reporting that immediate results would lower anxiety.
The AI software that aids in detection and triage of clinical concerns was first implemented in June 2019 at a single outpatient site utilizing 2D digital mammography. The AI software evaluated all imaging exams as soon as they were completed, triaging any suspicious findings into a sortable worklist and notifying the physicians. While integrating the AI tool into the imaging centers’ picture archiving and communication system was “unproblematic”, radiologist buy-in proved to be a challenge as physicians experienced fears of being replaced, distrust and hesitancy in learning the new approach.
The study showed that post the implementation of the AI tool, the average turnaround times declined from around 9.6 days based on 2019 data to 3.9 days in 2021. Among BI-RADS (Breast Imaging-Reporting and Data System) category 0 patients, the average turnaround times fell from 9.4 days (with a range of 1-33) to 4.7 days (0-22). Exams with suspicious findings were usually interpreted within one day, with fewer left for outside comparisons. There was also a decline of 71% in flags per examination when using AI from 2.26 per exam to 0.65, marking a “comparable and significant” reduction for both masses (down 72%) and calcifications (70%).
“Despite initial skepticism, a verbal survey of the interpreting radiologists performed two years after implementation showed universal preference for the AI-[computer-aided detection] compared with traditional CAD, the value of which has been questioned,” the researchers wrote. “Furthermore, the use of triage is now seen as the preferred way to manage their work lists,” indicating the “perception of greater ease” when reading batched mammograms.
Related Links:
Scripps Green Hospital
Latest Imaging IT News
- New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible
- Global AI in Medical Diagnostics Market to Be Driven by Demand for Image Recognition in Radiology
- Artificial Intelligence (AI) Program Accurately Predicts Lung Cancer Risk from CT Images
- Image Management Platform Streamlines Treatment Plans
- AI-Based Technology for Ultrasound Image Analysis Receives FDA Approval
- AI Technology for Detecting Breast Cancer Receives CE Mark Approval
- Digital Pathology Software Improves Workflow Efficiency
- Patient-Centric Portal Facilitates Direct Imaging Access
- New Workstation Supports Customer-Driven Imaging Workflow
Channels
Radiography
view channel
Routine Mammograms Could Predict Future Cardiovascular Disease in Women
Mammograms are widely used to screen for breast cancer, but they may also contain overlooked clues about cardiovascular health. Calcium deposits in the arteries of the breast signal stiffening blood vessels,... Read more
AI Detects Early Signs of Aging from Chest X-Rays
Chronological age does not always reflect how fast the body is truly aging, and current biological age tests often rely on DNA-based markers that may miss early organ-level decline. Detecting subtle, age-related... Read moreMRI
view channel
Novel Imaging Approach to Improve Treatment for Spinal Cord Injuries
Vascular dysfunction in the spinal cord contributes to multiple neurological conditions, including traumatic injuries and degenerative cervical myelopathy, where reduced blood flow can lead to progressive... Read more
AI-Assisted Model Enhances MRI Heart Scans
A cardiac MRI can reveal critical information about the heart’s function and any abnormalities, but traditional scans take 30 to 90 minutes and often suffer from poor image quality due to patient movement.... Read more
AI Model Outperforms Doctors at Identifying Patients Most At-Risk of Cardiac Arrest
Hypertrophic cardiomyopathy is one of the most common inherited heart conditions and a leading cause of sudden cardiac death in young individuals and athletes. While many patients live normal lives, some... Read moreUltrasound
view channel
Wearable Ultrasound Imaging System to Enable Real-Time Disease Monitoring
Chronic conditions such as hypertension and heart failure require close monitoring, yet today’s ultrasound imaging is largely confined to hospitals and short, episodic scans. This reactive model limits... Read more
Ultrasound Technique Visualizes Deep Blood Vessels in 3D Without Contrast Agents
Producing clear 3D images of deep blood vessels has long been difficult without relying on contrast agents, CT scans, or MRI. Standard ultrasound typically provides only 2D cross-sections, limiting clinicians’... Read moreNuclear Medicine
view channel
PET Imaging of Inflammation Predicts Recovery and Guides Therapy After Heart Attack
Acute myocardial infarction can trigger lasting heart damage, yet clinicians still lack reliable tools to identify which patients will regain function and which may develop heart failure.... Read more
Radiotheranostic Approach Detects, Kills and Reprograms Aggressive Cancers
Aggressive cancers such as osteosarcoma and glioblastoma often resist standard therapies, thrive in hostile tumor environments, and recur despite surgery, radiation, or chemotherapy. These tumors also... Read more
New Imaging Solution Improves Survival for Patients with Recurring Prostate Cancer
Detecting recurrent prostate cancer remains one of the most difficult challenges in oncology, as standard imaging methods such as bone scans and CT scans often fail to accurately locate small or early-stage tumors.... Read moreGeneral/Advanced Imaging
view channel
AI-Based Tool Accelerates Detection of Kidney Cancer
Diagnosing kidney cancer depends on computed tomography scans, often using contrast agents to reveal abnormalities in kidney structure. Tumors are not always searched for deliberately, as many scans are... Read more
New Algorithm Dramatically Speeds Up Stroke Detection Scans
When patients arrive at emergency rooms with stroke symptoms, clinicians must rapidly determine whether the cause is a blood clot or a brain bleed, as treatment decisions depend on this distinction.... Read moreIndustry News
view channel
GE HealthCare and NVIDIA Collaboration to Reimagine Diagnostic Imaging
GE HealthCare (Chicago, IL, USA) has entered into a collaboration with NVIDIA (Santa Clara, CA, USA), expanding the existing relationship between the two companies to focus on pioneering innovation in... Read morePatient-Specific 3D-Printed Phantoms Transform CT Imaging
New research has highlighted how anatomically precise, patient-specific 3D-printed phantoms are proving to be scalable, cost-effective, and efficient tools in the development of new CT scan algorithms... Read more
Siemens and Sectra Collaborate on Enhancing Radiology Workflows
Siemens Healthineers (Forchheim, Germany) and Sectra (Linköping, Sweden) have entered into a collaboration aimed at enhancing radiologists' diagnostic capabilities and, in turn, improving patient care... Read more







