Automated Brain MRI Image Labeling Holds Enormous Potential for AI
By MedImaging International staff writers Posted on 06 Aug 2021 |

Illustration
Researchers have automated brain MRI image labeling, needed to teach machine learning image recognition models, by deriving important labels from radiology reports and accurately assigning them to the corresponding MRI examinations, allowing more than 100,00 MRI examinations to be labeled in less than half an hour.
This was the first study that allowed researchers at King's College London (London UK) to label complex MRI image datasets at scale. The researchers say it would take years to manually perform labelling of more than 100,000 MRI examinations. Deep learning typically requires tens of thousands of labelled images to achieve the best possible performance in image recognition tasks. This represents a bottleneck to the development of deep learning systems for complex image datasets, particularly MRI which is fundamental to neurological abnormality detection.
"By overcoming this bottleneck, we have massively facilitated future deep learning image recognition tasks and this will almost certainly accelerate the arrival into the clinic of automated brain MRI readers. The potential for patient benefit through, ultimately, timely diagnosis, is enormous," said senior author, Dr. Tom Booth from the School of Biomedical Engineering & Imaging Sciences at King's College London.
"This study builds on recent breakthroughs in natural language processing, particularly the release of large transformer-based models such as BERT and BioBERT which have been trained on huge collections of unlabeled text such as all of English Wikipedia, and all PubMed Central abstracts and full-text articles; in the spirit of open-access science, we have also made our code and models available to other researchers to ensure that as many people benefit from this work as possible," added lead author, Dr. David Wood from the School of Biomedical Engineering & Imaging Sciences.
According to the researchers, while one barrier has now been overcome, further challenges will be, firstly, to perform the deep learning image recognition tasks which also have multiple technical challenges; and secondly, once this is achieved, to ensure the developed models can still perform accurately across different hospitals using different scanners.
Related Links:
King's College London
This was the first study that allowed researchers at King's College London (London UK) to label complex MRI image datasets at scale. The researchers say it would take years to manually perform labelling of more than 100,000 MRI examinations. Deep learning typically requires tens of thousands of labelled images to achieve the best possible performance in image recognition tasks. This represents a bottleneck to the development of deep learning systems for complex image datasets, particularly MRI which is fundamental to neurological abnormality detection.
"By overcoming this bottleneck, we have massively facilitated future deep learning image recognition tasks and this will almost certainly accelerate the arrival into the clinic of automated brain MRI readers. The potential for patient benefit through, ultimately, timely diagnosis, is enormous," said senior author, Dr. Tom Booth from the School of Biomedical Engineering & Imaging Sciences at King's College London.
"This study builds on recent breakthroughs in natural language processing, particularly the release of large transformer-based models such as BERT and BioBERT which have been trained on huge collections of unlabeled text such as all of English Wikipedia, and all PubMed Central abstracts and full-text articles; in the spirit of open-access science, we have also made our code and models available to other researchers to ensure that as many people benefit from this work as possible," added lead author, Dr. David Wood from the School of Biomedical Engineering & Imaging Sciences.
According to the researchers, while one barrier has now been overcome, further challenges will be, firstly, to perform the deep learning image recognition tasks which also have multiple technical challenges; and secondly, once this is achieved, to ensure the developed models can still perform accurately across different hospitals using different scanners.
Related Links:
King's College London
Latest Imaging IT News
- New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible
- Global AI in Medical Diagnostics Market to Be Driven by Demand for Image Recognition in Radiology
- AI-Based Mammography Triage Software Helps Dramatically Improve Interpretation Process
- Artificial Intelligence (AI) Program Accurately Predicts Lung Cancer Risk from CT Images
- Image Management Platform Streamlines Treatment Plans
- AI-Based Technology for Ultrasound Image Analysis Receives FDA Approval
- AI Technology for Detecting Breast Cancer Receives CE Mark Approval
- Digital Pathology Software Improves Workflow Efficiency
- Patient-Centric Portal Facilitates Direct Imaging Access
- New Workstation Supports Customer-Driven Imaging Workflow
Channels
Radiography
view channel
AI-Powered Mammography Screening Boosts Cancer Detection in Single-Reader Settings
A new study has revealed that an artificial intelligence (AI)-powered solution significantly improves cancer detection in single-reader mammography settings without increasing recall rates, offering a... Read more
Photon Counting Detectors Promise Fast Color X-Ray Images
For many years, healthcare professionals have depended on traditional 2D X-rays to diagnose common bone fractures, though small fractures or soft tissue damage, such as cancers, can often be missed.... Read moreUltrasound
view channel
Artificial Intelligence Detects Undiagnosed Liver Disease from Echocardiograms
Echocardiography is a diagnostic procedure that uses ultrasound to visualize the heart and its associated structures. This imaging test is commonly used as an early screening method when doctors suspect... Read more
Ultrasound Imaging Non-Invasively Tracks Tumor Response to Radiation and Immunotherapy
While immunotherapy holds promise in the fight against triple-negative breast cancer, many patients fail to respond to current treatments. A major challenge has been predicting and monitoring how individual... Read moreNuclear Medicine
view channel
Novel Radiotracer Identifies Biomarker for Triple-Negative Breast Cancer
Triple-negative breast cancer (TNBC), which represents 15-20% of all breast cancer cases, is one of the most aggressive subtypes, with a five-year survival rate of about 40%. Due to its significant heterogeneity... Read more
Innovative PET Imaging Technique to Help Diagnose Neurodegeneration
Neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS) and Alzheimer’s disease, are often diagnosed only after physical symptoms appear, by which time treatment may no longer be effective.... Read moreGeneral/Advanced Imaging
view channel
AI Reduces CT Lung Cancer Screening Workload by Almost 80%
Lung cancer impacts over 48,000 individuals in the UK annually, and early detection is key to improving survival rates. The UK Lung Cancer Screening (UKLS) trial has already shown that low-dose CT (LDCT)... Read more
Cutting-Edge Technology Combines Light and Sound for Real-Time Stroke Monitoring
Stroke is the second leading cause of death globally, claiming millions of lives each year. Ischemic stroke, in particular, occurs when a blood vessel that supplies blood to the brain becomes blocked.... Read more
AI System Detects Subtle Changes in Series of Medical Images Over Time
Traditional approaches for analyzing longitudinal image datasets typically require significant customization and extensive pre-processing. For instance, in studies of the brain, researchers often begin... Read more
New CT Scan Technique to Improve Prognosis and Treatments for Head and Neck Cancers
Cancers of the mouth, nose, and throat are becoming increasingly common in the U.S., particularly among younger individuals. Approximately 60,000 new cases are diagnosed annually, with 20% of these cases... Read moreImaging IT
view channel
New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible
Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Global AI in Medical Diagnostics Market to Be Driven by Demand for Image Recognition in Radiology
The global artificial intelligence (AI) in medical diagnostics market is expanding with early disease detection being one of its key applications and image recognition becoming a compelling consumer proposition... Read moreIndustry News
view channel
Siemens and Sectra Collaborate on Enhancing Radiology Workflows
Siemens Healthineers (Forchheim, Germany) and Sectra (Linköping, Sweden) have entered into a collaboration aimed at enhancing radiologists' diagnostic capabilities and, in turn, improving patient care... Read more