X-Ray AI Tool Improves Bone Fracture Detection
|
By MedImaging International staff writers Posted on 23 Apr 2020 |
A novel artificial intelligence (AI) tool detects more major fractures on x-ray and computerized tomography (CT) scans than expert radiologists, according to a new study.
Developed at Prince of Wales Hospital (Sydney, Australia) and the Garvan Institute of Medical Research (Sydney, Australia), the X-Ray Artificial Intelligence Tool (XRAIT) uses natural-language AI processing to screen radiology reports for fractures. The researchers first analyzed over 5,000 digital radiology reports of patients over 50 who presented to the emergency department (ED) and underwent bone imaging for osteoporosis. XRAIT results were then compared with manual radiologist review of 224 patient records from the hospital's fracture liaison service in the same period.
The results showed that XRAIT detected 349 people with fractures that were likely due to low bone mass, compared with 98 people with fractures identified by manual reads, a 3.5-fold higher detection rate. XRAIT was also tested on an independent dataset of Australian adults over 60. From 327 reports of confirmed known fractures and non-fractures, XRAIT accurately identified 70% of fractures and correctly ruled out 90% of patients without fractures. The study was presented via an ENDO 2020 virtual press conference, held on March 30, 2020.
“The new AI tool can screen high volumes of imaging reports and identify more patients at risk for osteoporosis with high analytical and clinical specificity, and in numbers likely to overwhelm osteoporosis fracture prevention services,” said senior author Christopher White, MD, of Prince of Wales Hospital. “Further development includes linking the AI tool with clinical risk factors and treatment data to help target patients with osteoporosis, improve productivity and safety, and reduce the burden of care to save money safely.”
“With XRAIT, limited health care resources can be optimized to manage the patients identified as at risk rather than used on the identification process itself,” said study co-author Jacqueline Center, MD, of the Garvan Institute. “By improving identification of patients needing osteoporosis treatment or prevention, XRAIT may help reduce the risk of a second fracture and the overall burden of illness and death from osteoporosis.”
Osteoporotic fractures are one of the most common causes of disability and a major contributor to medical care costs worldwide. Fractures caused by low-level trauma equivalent to a fall from a standing height or less at major (hip, spine, distal radius, proximal humerus) or minor (pelvis, sacrum, ribs, distal femur and humerus, ankle) sites in adults over age 50, should be first regarded as osteoporotic. Prior osteoporotic fracture at any site is one of the strongest risk factors for a new fracture, which often occurs soon after the first fracture.
Related Links:
Prince of Wales Hospital
Garvan Institute of Medical Research
Developed at Prince of Wales Hospital (Sydney, Australia) and the Garvan Institute of Medical Research (Sydney, Australia), the X-Ray Artificial Intelligence Tool (XRAIT) uses natural-language AI processing to screen radiology reports for fractures. The researchers first analyzed over 5,000 digital radiology reports of patients over 50 who presented to the emergency department (ED) and underwent bone imaging for osteoporosis. XRAIT results were then compared with manual radiologist review of 224 patient records from the hospital's fracture liaison service in the same period.
The results showed that XRAIT detected 349 people with fractures that were likely due to low bone mass, compared with 98 people with fractures identified by manual reads, a 3.5-fold higher detection rate. XRAIT was also tested on an independent dataset of Australian adults over 60. From 327 reports of confirmed known fractures and non-fractures, XRAIT accurately identified 70% of fractures and correctly ruled out 90% of patients without fractures. The study was presented via an ENDO 2020 virtual press conference, held on March 30, 2020.
“The new AI tool can screen high volumes of imaging reports and identify more patients at risk for osteoporosis with high analytical and clinical specificity, and in numbers likely to overwhelm osteoporosis fracture prevention services,” said senior author Christopher White, MD, of Prince of Wales Hospital. “Further development includes linking the AI tool with clinical risk factors and treatment data to help target patients with osteoporosis, improve productivity and safety, and reduce the burden of care to save money safely.”
“With XRAIT, limited health care resources can be optimized to manage the patients identified as at risk rather than used on the identification process itself,” said study co-author Jacqueline Center, MD, of the Garvan Institute. “By improving identification of patients needing osteoporosis treatment or prevention, XRAIT may help reduce the risk of a second fracture and the overall burden of illness and death from osteoporosis.”
Osteoporotic fractures are one of the most common causes of disability and a major contributor to medical care costs worldwide. Fractures caused by low-level trauma equivalent to a fall from a standing height or less at major (hip, spine, distal radius, proximal humerus) or minor (pelvis, sacrum, ribs, distal femur and humerus, ankle) sites in adults over age 50, should be first regarded as osteoporotic. Prior osteoporotic fracture at any site is one of the strongest risk factors for a new fracture, which often occurs soon after the first fracture.
Related Links:
Prince of Wales Hospital
Garvan Institute of Medical Research
Latest Radiography News
- Routine Mammograms Could Predict Future Cardiovascular Disease in Women
- AI Detects Early Signs of Aging from Chest X-Rays
- X-Ray Breakthrough Captures Three Image-Contrast Types in Single Shot
- AI Generates Future Knee X-Rays to Predict Osteoarthritis Progression Risk
- AI Algorithm Uses Mammograms to Accurately Predict Cardiovascular Risk in Women
- AI Hybrid Strategy Improves Mammogram Interpretation
- AI Technology Predicts Personalized Five-Year Risk of Developing Breast Cancer
- RSNA AI Challenge Models Can Independently Interpret Mammograms
- New Technique Combines X-Ray Imaging and Radar for Safer Cancer Diagnosis
- New AI Tool Helps Doctors Read Chest X‑Rays Better
- Wearable X-Ray Imaging Detecting Fabric to Provide On-The-Go Diagnostic Scanning
- AI Helps Radiologists Spot More Lesions in Mammograms
- AI Detects Fatty Liver Disease from Chest X-Rays
- AI Detects Hidden Heart Disease in Existing CT Chest Scans
- Ultra-Lightweight AI Model Runs Without GPU to Break Barriers in Lung Cancer Diagnosis
- AI Radiology Tool Identifies Life-Threatening Conditions in Milliseconds
Channels
MRI
view channel
New Material Boosts MRI Image Quality
Magnetic resonance imaging (MRI) is a cornerstone of modern diagnostics, yet certain deep or anatomically complex tissues, including delicate structures of the eye and orbit, remain difficult to visualize clearly.... Read more
AI Model Reads and Diagnoses Brain MRI in Seconds
Brain MRI scans are critical for diagnosing strokes, hemorrhages, and other neurological disorders, but interpreting them can take hours or even days due to growing demand and limited specialist availability.... Read moreMRI Scan Breakthrough to Help Avoid Risky Invasive Tests for Heart Patients
Heart failure patients often require right heart catheterization to assess how severely their heart is struggling to pump blood, a procedure that involves inserting a tube into the heart to measure blood... Read more
MRI Scans Reveal Signature Patterns of Brain Activity to Predict Recovery from TBI
Recovery after traumatic brain injury (TBI) varies widely, with some patients regaining full function while others are left with lasting disabilities. Prognosis is especially difficult to assess in patients... Read moreUltrasound
view channel
AI Model Accurately Detects Placenta Accreta in Pregnancy Before Delivery
Placenta accreta spectrum (PAS) is a life-threatening pregnancy complication in which the placenta abnormally attaches to the uterine wall. The condition is a leading cause of maternal mortality and morbidity... Read more
Portable Ultrasound Sensor to Enable Earlier Breast Cancer Detection
Breast cancer screening relies heavily on annual mammograms, but aggressive tumors can develop between scans, accounting for up to 30 percent of cases. These interval cancers are often diagnosed later,... Read more
Portable Imaging Scanner to Diagnose Lymphatic Disease in Real Time
Lymphatic disorders affect hundreds of millions of people worldwide and are linked to conditions ranging from limb swelling and organ dysfunction to birth defects and cancer-related complications.... Read more
Imaging Technique Generates Simultaneous 3D Color Images of Soft-Tissue Structure and Vasculature
Medical imaging tools often force clinicians to choose between speed, structural detail, and functional insight. Ultrasound is fast and affordable but typically limited to two-dimensional anatomy, while... Read moreNuclear Medicine
view channel
Radiopharmaceutical Molecule Marker to Improve Choice of Bladder Cancer Therapies
Targeted cancer therapies only work when tumor cells express the specific molecular structures they are designed to attack. In urothelial carcinoma, a common form of bladder cancer, the cell surface protein... Read more
Cancer “Flashlight” Shows Who Can Benefit from Targeted Treatments
Targeted cancer therapies can be highly effective, but only when a patient’s tumor expresses the specific protein the treatment is designed to attack. Determining this usually requires biopsies or advanced... Read moreGeneral/Advanced Imaging
view channel
AI Tool Offers Prognosis for Patients with Head and Neck Cancer
Oropharyngeal cancer is a form of head and neck cancer that can spread through lymph nodes, significantly affecting survival and treatment decisions. Current therapies often involve combinations of surgery,... Read more
New 3D Imaging System Addresses MRI, CT and Ultrasound Limitations
Medical imaging is central to diagnosing and managing injuries, cancer, infections, and chronic diseases, yet existing tools each come with trade-offs. Ultrasound, X-ray, CT, and MRI can be costly, time-consuming,... Read moreImaging IT
view channel
New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible
Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Global AI in Medical Diagnostics Market to Be Driven by Demand for Image Recognition in Radiology
The global artificial intelligence (AI) in medical diagnostics market is expanding with early disease detection being one of its key applications and image recognition becoming a compelling consumer proposition... Read moreIndustry News
view channel
Nuclear Medicine Set for Continued Growth Driven by Demand for Precision Diagnostics
Clinical imaging services face rising demand for precise molecular diagnostics and targeted radiopharmaceutical therapy as cancer and chronic disease rates climb. A new market analysis projects rapid expansion... Read more







