X-Ray Elastography Images Soft-Tissue Tumors
|
By MedImaging International staff writers Posted on 16 Apr 2020 |

Image: X-ray elastography images showing the stiffness of different materials (Photo courtesy of Wataru Yashiro/ Tohoku University)
A new study suggests that elastography can be adapted to X-ray imaging of soft tissues to reveal tumors earlier than other techniques.
Developed by researchers at Tohoku University (Japan), the Institute of Materials Structure Science (IMSS-KEK; Ibaraki, Japan), and other institutions, dynamic X-ray elastography is a novel imaging modality that relies on shear-wave propagation to map elastic modulus in soft viscoelastic materials, which has far only been possible via magnetic resonance imaging (MRI) and ultrasound imaging. However, X-rays can provide a thousand-fold greater resolution than ultrasound.
For the study, the researchers pneumatically vibrated polyacrylamide gel phantoms to obtain two-dimensional (2D) maps of storage and loss moduli, which were determined from the temporal variation in displacement vectors of the vibrating particles in the phantom models. The results revealed a storage moduli precision of 30% and a spatial resolution several orders of magnitude higher than that of MRI or ultrasound imaging modalities. The study was published in the April 2020 issue of Applied Physics Express.
“The resulting images would be much higher resolution, able to spot things on the scale of microns instead of millimeters,” said senior author Wataru Yashiro, PhD, of Tohoku University. “This greater precision doesn't just mean identification of much smaller or deeper lesions, but, importantly for patients, because smaller lesions can be newer ones, potentially also much earlier on in a disease or condition.”
Elastography is a medical imaging modality that maps the elastic properties and stiffness of soft tissues in order to provide diagnostic information. The technique works by creating a distortion in the tissue, observing the tissue response to infer the mechanical properties of the tissue, and then display the results as an image. The most prominent techniques use ultrasound or MRI to make both the stiffness map and an anatomical image for comparison.
Related Links:
Tohoku University
Institute of Materials Structure Science
Developed by researchers at Tohoku University (Japan), the Institute of Materials Structure Science (IMSS-KEK; Ibaraki, Japan), and other institutions, dynamic X-ray elastography is a novel imaging modality that relies on shear-wave propagation to map elastic modulus in soft viscoelastic materials, which has far only been possible via magnetic resonance imaging (MRI) and ultrasound imaging. However, X-rays can provide a thousand-fold greater resolution than ultrasound.
For the study, the researchers pneumatically vibrated polyacrylamide gel phantoms to obtain two-dimensional (2D) maps of storage and loss moduli, which were determined from the temporal variation in displacement vectors of the vibrating particles in the phantom models. The results revealed a storage moduli precision of 30% and a spatial resolution several orders of magnitude higher than that of MRI or ultrasound imaging modalities. The study was published in the April 2020 issue of Applied Physics Express.
“The resulting images would be much higher resolution, able to spot things on the scale of microns instead of millimeters,” said senior author Wataru Yashiro, PhD, of Tohoku University. “This greater precision doesn't just mean identification of much smaller or deeper lesions, but, importantly for patients, because smaller lesions can be newer ones, potentially also much earlier on in a disease or condition.”
Elastography is a medical imaging modality that maps the elastic properties and stiffness of soft tissues in order to provide diagnostic information. The technique works by creating a distortion in the tissue, observing the tissue response to infer the mechanical properties of the tissue, and then display the results as an image. The most prominent techniques use ultrasound or MRI to make both the stiffness map and an anatomical image for comparison.
Related Links:
Tohoku University
Institute of Materials Structure Science
Latest Radiography News
- Routine Mammograms Could Predict Future Cardiovascular Disease in Women
- AI Detects Early Signs of Aging from Chest X-Rays
- X-Ray Breakthrough Captures Three Image-Contrast Types in Single Shot
- AI Generates Future Knee X-Rays to Predict Osteoarthritis Progression Risk
- AI Algorithm Uses Mammograms to Accurately Predict Cardiovascular Risk in Women
- AI Hybrid Strategy Improves Mammogram Interpretation
- AI Technology Predicts Personalized Five-Year Risk of Developing Breast Cancer
- RSNA AI Challenge Models Can Independently Interpret Mammograms
- New Technique Combines X-Ray Imaging and Radar for Safer Cancer Diagnosis
- New AI Tool Helps Doctors Read Chest X‑Rays Better
- Wearable X-Ray Imaging Detecting Fabric to Provide On-The-Go Diagnostic Scanning
- AI Helps Radiologists Spot More Lesions in Mammograms
- AI Detects Fatty Liver Disease from Chest X-Rays
- AI Detects Hidden Heart Disease in Existing CT Chest Scans
- Ultra-Lightweight AI Model Runs Without GPU to Break Barriers in Lung Cancer Diagnosis
- AI Radiology Tool Identifies Life-Threatening Conditions in Milliseconds
Channels
MRI
view channel
MRI Scan Breakthrough to Help Avoid Risky Invasive Tests for Heart Patients
Heart failure patients often require right heart catheterization to assess how severely their heart is struggling to pump blood, a procedure that involves inserting a tube into the heart to measure blood... Read more
MRI Scans Reveal Signature Patterns of Brain Activity to Predict Recovery from TBI
Recovery after traumatic brain injury (TBI) varies widely, with some patients regaining full function while others are left with lasting disabilities. Prognosis is especially difficult to assess in patients... Read moreUltrasound
view channel
Portable Ultrasound Sensor to Enable Earlier Breast Cancer Detection
Breast cancer screening relies heavily on annual mammograms, but aggressive tumors can develop between scans, accounting for up to 30 percent of cases. These interval cancers are often diagnosed later,... Read more
Portable Imaging Scanner to Diagnose Lymphatic Disease in Real Time
Lymphatic disorders affect hundreds of millions of people worldwide and are linked to conditions ranging from limb swelling and organ dysfunction to birth defects and cancer-related complications.... Read more
Imaging Technique Generates Simultaneous 3D Color Images of Soft-Tissue Structure and Vasculature
Medical imaging tools often force clinicians to choose between speed, structural detail, and functional insight. Ultrasound is fast and affordable but typically limited to two-dimensional anatomy, while... Read moreNuclear Medicine
view channel
Radiopharmaceutical Molecule Marker to Improve Choice of Bladder Cancer Therapies
Targeted cancer therapies only work when tumor cells express the specific molecular structures they are designed to attack. In urothelial carcinoma, a common form of bladder cancer, the cell surface protein... Read more
Cancer “Flashlight” Shows Who Can Benefit from Targeted Treatments
Targeted cancer therapies can be highly effective, but only when a patient’s tumor expresses the specific protein the treatment is designed to attack. Determining this usually requires biopsies or advanced... Read moreGeneral/Advanced Imaging
view channel
AI Tool Offers Prognosis for Patients with Head and Neck Cancer
Oropharyngeal cancer is a form of head and neck cancer that can spread through lymph nodes, significantly affecting survival and treatment decisions. Current therapies often involve combinations of surgery,... Read more
New 3D Imaging System Addresses MRI, CT and Ultrasound Limitations
Medical imaging is central to diagnosing and managing injuries, cancer, infections, and chronic diseases, yet existing tools each come with trade-offs. Ultrasound, X-ray, CT, and MRI can be costly, time-consuming,... Read moreImaging IT
view channel
New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible
Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Global AI in Medical Diagnostics Market to Be Driven by Demand for Image Recognition in Radiology
The global artificial intelligence (AI) in medical diagnostics market is expanding with early disease detection being one of its key applications and image recognition becoming a compelling consumer proposition... Read moreIndustry News
view channel
Nuclear Medicine Set for Continued Growth Driven by Demand for Precision Diagnostics
Clinical imaging services face rising demand for precise molecular diagnostics and targeted radiopharmaceutical therapy as cancer and chronic disease rates climb. A new market analysis projects rapid expansion... Read more







