Radiomic Algorithm Predicts if Patient’s Cancer Can Return 10 Years After Treatment
By MedImaging International staff writers Posted on 16 Jan 2020 |

Illustration
A new study by researchers at Penn Medicine (Philadelphia, PA, USA) has found that Magnetic Resonance Imaging (MRI) and an emerging field of medicine called radiomics — which uses algorithms to extract a large amount of features from medical images — could help to characterize the heterogeneity of cancer cells within a tumor and allow for a better understanding of the causes and progression of a person’s individual disease.
Diverse diseases such as breast cancer create challenges for clinicians, specifically on a cellular level. While one patient’s tumor may differ from another’s, the cells within the tumor of a single patient can also vary greatly, making it problematic, as an examination of a tumor usually relies on a biopsy, which only captures a small sample of the cells. In order to determine whether they could use imaging and radiomics for more personalized tumor characterization, the researchers used MRI to extract 60 radiomic features, or biomarkers, from 95 women with primary invasive breast cancer. After following up with the patients 10 years later, the researchers found that a scan that showed high tumor heterogeneity at the time of diagnosis — meaning a high diversity of cells — could successfully predict a cancer recurrence.
The researchers retrospectively analyzed patient scans from a 2002-2006 clinical trial conducted at Penn Medicine. For each woman, the researchers generated a “signal enhancement ratio” (SER) map and from it, extracted various imaging features in order to understand the relationship between those features and conventional biomarkers (such as gene mutations or hormone receptor status) and patient outcomes. They found that their algorithm was able to successfully predict recurrence-free survival after 10 years. To validate their findings, the researchers compared their results to an independent sample of 163 patients with breast cancer from the publicly available Cancer Imaging Archive.
“Our study shows that imaging has the potential to capture the whole tumor’s behavior without doing a procedure that is invasive or limited by sampling error,” said the study’s lead author Rhea Chitalia, a PhD candidate in the School of Engineering and Applied Science at the University of Pennsylvania. “Women who had more heterogeneous tumors tended to have a greater risk of tumor recurrence.”
While imaging may not completely replace the need for tumor biopsies, radiologic methods could augment what is currently the “gold standard” of care by giving a more detailed profile of a patient’s disease and guiding personalized treatment, according to principal investigator Despina Kontos, PhD, an associate professor of Radiology in the Perelman School of Medicine at the University of Pennsylvania.
Related Links:
Penn Medicine
Diverse diseases such as breast cancer create challenges for clinicians, specifically on a cellular level. While one patient’s tumor may differ from another’s, the cells within the tumor of a single patient can also vary greatly, making it problematic, as an examination of a tumor usually relies on a biopsy, which only captures a small sample of the cells. In order to determine whether they could use imaging and radiomics for more personalized tumor characterization, the researchers used MRI to extract 60 radiomic features, or biomarkers, from 95 women with primary invasive breast cancer. After following up with the patients 10 years later, the researchers found that a scan that showed high tumor heterogeneity at the time of diagnosis — meaning a high diversity of cells — could successfully predict a cancer recurrence.
The researchers retrospectively analyzed patient scans from a 2002-2006 clinical trial conducted at Penn Medicine. For each woman, the researchers generated a “signal enhancement ratio” (SER) map and from it, extracted various imaging features in order to understand the relationship between those features and conventional biomarkers (such as gene mutations or hormone receptor status) and patient outcomes. They found that their algorithm was able to successfully predict recurrence-free survival after 10 years. To validate their findings, the researchers compared their results to an independent sample of 163 patients with breast cancer from the publicly available Cancer Imaging Archive.
“Our study shows that imaging has the potential to capture the whole tumor’s behavior without doing a procedure that is invasive or limited by sampling error,” said the study’s lead author Rhea Chitalia, a PhD candidate in the School of Engineering and Applied Science at the University of Pennsylvania. “Women who had more heterogeneous tumors tended to have a greater risk of tumor recurrence.”
While imaging may not completely replace the need for tumor biopsies, radiologic methods could augment what is currently the “gold standard” of care by giving a more detailed profile of a patient’s disease and guiding personalized treatment, according to principal investigator Despina Kontos, PhD, an associate professor of Radiology in the Perelman School of Medicine at the University of Pennsylvania.
Related Links:
Penn Medicine
Latest Industry News News
- GE HealthCare and NVIDIA Collaboration to Reimagine Diagnostic Imaging
- Patient-Specific 3D-Printed Phantoms Transform CT Imaging
- Siemens and Sectra Collaborate on Enhancing Radiology Workflows
- Bracco Diagnostics and ColoWatch Partner to Expand Availability CRC Screening Tests Using Virtual Colonoscopy
- Mindray Partners with TeleRay to Streamline Ultrasound Delivery
- Philips and Medtronic Partner on Stroke Care
- Siemens and Medtronic Enter into Global Partnership for Advancing Spine Care Imaging Technologies
- RSNA 2024 Technical Exhibits to Showcase Latest Advances in Radiology
- Bracco Collaborates with Arrayus on Microbubble-Assisted Focused Ultrasound Therapy for Pancreatic Cancer
- Innovative Collaboration to Enhance Ischemic Stroke Detection and Elevate Standards in Diagnostic Imaging
- RSNA 2024 Registration Opens
- Microsoft collaborates with Leading Academic Medical Systems to Advance AI in Medical Imaging
- GE HealthCare Acquires Intelligent Ultrasound Group’s Clinical Artificial Intelligence Business
- Bayer and Rad AI Collaborate on Expanding Use of Cutting Edge AI Radiology Operational Solutions
- Polish Med-Tech Company BrainScan to Expand Extensively into Foreign Markets
- Hologic Acquires UK-Based Breast Surgical Guidance Company Endomagnetics Ltd.
Channels
Radiography
view channel
AI Hybrid Strategy Improves Mammogram Interpretation
Breast cancer screening programs rely heavily on radiologists interpreting mammograms, a process that is time-intensive and subject to errors. While artificial intelligence (AI) models have shown strong... Read more
AI Technology Predicts Personalized Five-Year Risk of Developing Breast Cancer
Breast cancer remains one of the most common cancers among women, with about one in eight receiving a diagnosis in their lifetime. Despite widespread use of mammography, about 34% of patients in the U.... Read moreMRI
view channel
AI-Assisted Model Enhances MRI Heart Scans
A cardiac MRI can reveal critical information about the heart’s function and any abnormalities, but traditional scans take 30 to 90 minutes and often suffer from poor image quality due to patient movement.... Read more
AI Model Outperforms Doctors at Identifying Patients Most At-Risk of Cardiac Arrest
Hypertrophic cardiomyopathy is one of the most common inherited heart conditions and a leading cause of sudden cardiac death in young individuals and athletes. While many patients live normal lives, some... Read moreUltrasound
view channel
Non-Invasive Ultrasound-Based Tool Accurately Detects Infant Meningitis
Meningitis, an inflammation of the membranes surrounding the brain and spinal cord, can be fatal in infants if not diagnosed and treated early. Even when treated, it may leave lasting damage, such as cognitive... Read more
Breakthrough Deep Learning Model Enhances Handheld 3D Medical Imaging
Ultrasound imaging is a vital diagnostic technique used to visualize internal organs and tissues in real time and to guide procedures such as biopsies and injections. When paired with photoacoustic imaging... Read moreNuclear Medicine
view channel
New Camera Sees Inside Human Body for Enhanced Scanning and Diagnosis
Nuclear medicine scans like single-photon emission computed tomography (SPECT) allow doctors to observe heart function, track blood flow, and detect hidden diseases. However, current detectors are either... Read more
Novel Bacteria-Specific PET Imaging Approach Detects Hard-To-Diagnose Lung Infections
Mycobacteroides abscessus is a rapidly growing mycobacteria that primarily affects immunocompromised patients and those with underlying lung diseases, such as cystic fibrosis or chronic obstructive pulmonary... Read moreGeneral/Advanced Imaging
view channel
Cutting-Edge Angio-CT Solution Offers New Therapeutic Possibilities
Maintaining accuracy and safety in interventional radiology is a constant challenge, especially as complex procedures require both high precision and efficiency. Traditional setups often involve multiple... Read more
Extending CT Imaging Detects Hidden Blood Clots in Stroke Patients
Strokes caused by blood clots or other mechanisms that obstruct blood flow in the brain account for about 85% of all strokes. Determining where a clot originates is crucial, since it guides safe and effective... Read more
Groundbreaking AI Model Accurately Segments Liver Tumors from CT Scans
Liver cancer is the sixth most common cancer worldwide and a leading cause of cancer-related deaths. Accurate segmentation of liver tumors is critical for diagnosis and therapy, but manual methods by radiologists... Read more
New CT-Based Indicator Helps Predict Life-Threatening Postpartum Bleeding Cases
Postpartum hemorrhage (PPH) is a leading cause of maternal death worldwide. While most cases can be controlled with medications and basic interventions, some become life-threatening and require invasive treatments.... Read moreImaging IT
view channel
New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible
Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more