Artificial Intelligence Accelerates Chest X-Ray Analysis
|
By MedImaging International staff writers Posted on 05 Feb 2019 |
A novel artificial Intelligence (AI) system can dramatically reduce the time needed to receive an expert radiologist opinion on abnormal chest X-rays with critical findings, claims a new study.
Developed by researchers at King’s College London (KCL; United Kingdom), the University of Warwick (Coventry, United Kingdom), and other institutions, the AI system was developed using 470,388 fully anonymized institutional adult chest radiographs acquired from 2007 to 2017. The accompanying radiology reports were pre-processed using an in-house natural language processing (NLP) system modeling radiologic language, which analyzed the free-text reports to prioritize each radiograph as critical, urgent, non-urgent, or normal.
An ensemble of two deep convolutional neural networks (CNNs) was then trained to predict the clinical priority from radiologic appearances alone. The system’s performance in radiograph prioritization was tested in a simulation by using an independent set of 15,887 radiographs. Prediction performance was assessed with the area under the receiver operating characteristic curve, with sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) also determined, with the intention of automating real-time adult chest radiographs reporting based on image appearance.
The results revealed that normal chest radiographs (used to diagnose and monitor a wide range of conditions affecting the lungs, heart, bones, and soft tissues) were detected by the AI system with a sensitivity of 71%, specificity of 95%, PPV of 73%, and NPV of 94%. The average reporting delay using the algorithms was reduced from 11.2 to just 2.7 days for critical imaging findings, and from 7.6 to 4.1 days for urgent imaging findings, when compared with historical data. The study was published on January 19, 2019, in Radiology.
“The increasing clinical demands on radiology departments worldwide have challenged current service delivery models. It is no longer feasible for many Radiology departments with their current staffing level to report all acquired plain radiographs in a timely manner, leading to large backlogs of unreported studies,” said senior author Professor Giovanni Montana, MD, of the University of Warwick. “In the UK, it is estimated that at any time there are over 300,000 radiographs waiting over 30 days for reporting. Alternative models of care, such as computer vision algorithms, could be used to greatly reduce delays in the process of identifying and acting on abnormal X-rays -- particularly for chest radiographs.”
CNN’s use a cascade of many layers of nonlinear processing units for images or other data feature extraction and transformation, with each successive layer using the output from the previous layer as input in order to form a hierarchical representation.
Related Links:
King’s College London
University of Warwick
Developed by researchers at King’s College London (KCL; United Kingdom), the University of Warwick (Coventry, United Kingdom), and other institutions, the AI system was developed using 470,388 fully anonymized institutional adult chest radiographs acquired from 2007 to 2017. The accompanying radiology reports were pre-processed using an in-house natural language processing (NLP) system modeling radiologic language, which analyzed the free-text reports to prioritize each radiograph as critical, urgent, non-urgent, or normal.
An ensemble of two deep convolutional neural networks (CNNs) was then trained to predict the clinical priority from radiologic appearances alone. The system’s performance in radiograph prioritization was tested in a simulation by using an independent set of 15,887 radiographs. Prediction performance was assessed with the area under the receiver operating characteristic curve, with sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) also determined, with the intention of automating real-time adult chest radiographs reporting based on image appearance.
The results revealed that normal chest radiographs (used to diagnose and monitor a wide range of conditions affecting the lungs, heart, bones, and soft tissues) were detected by the AI system with a sensitivity of 71%, specificity of 95%, PPV of 73%, and NPV of 94%. The average reporting delay using the algorithms was reduced from 11.2 to just 2.7 days for critical imaging findings, and from 7.6 to 4.1 days for urgent imaging findings, when compared with historical data. The study was published on January 19, 2019, in Radiology.
“The increasing clinical demands on radiology departments worldwide have challenged current service delivery models. It is no longer feasible for many Radiology departments with their current staffing level to report all acquired plain radiographs in a timely manner, leading to large backlogs of unreported studies,” said senior author Professor Giovanni Montana, MD, of the University of Warwick. “In the UK, it is estimated that at any time there are over 300,000 radiographs waiting over 30 days for reporting. Alternative models of care, such as computer vision algorithms, could be used to greatly reduce delays in the process of identifying and acting on abnormal X-rays -- particularly for chest radiographs.”
CNN’s use a cascade of many layers of nonlinear processing units for images or other data feature extraction and transformation, with each successive layer using the output from the previous layer as input in order to form a hierarchical representation.
Related Links:
King’s College London
University of Warwick
Latest Imaging IT News
- New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible
- Global AI in Medical Diagnostics Market to Be Driven by Demand for Image Recognition in Radiology
- AI-Based Mammography Triage Software Helps Dramatically Improve Interpretation Process
- Artificial Intelligence (AI) Program Accurately Predicts Lung Cancer Risk from CT Images
- Image Management Platform Streamlines Treatment Plans
- AI-Based Technology for Ultrasound Image Analysis Receives FDA Approval
- AI Technology for Detecting Breast Cancer Receives CE Mark Approval
- Digital Pathology Software Improves Workflow Efficiency
- Patient-Centric Portal Facilitates Direct Imaging Access
- New Workstation Supports Customer-Driven Imaging Workflow
Channels
Radiography
view channel
Routine Mammograms Could Predict Future Cardiovascular Disease in Women
Mammograms are widely used to screen for breast cancer, but they may also contain overlooked clues about cardiovascular health. Calcium deposits in the arteries of the breast signal stiffening blood vessels,... Read more
AI Detects Early Signs of Aging from Chest X-Rays
Chronological age does not always reflect how fast the body is truly aging, and current biological age tests often rely on DNA-based markers that may miss early organ-level decline. Detecting subtle, age-related... Read moreMRI
view channel
AI Model Reads and Diagnoses Brain MRI in Seconds
Brain MRI scans are critical for diagnosing strokes, hemorrhages, and other neurological disorders, but interpreting them can take hours or even days due to growing demand and limited specialist availability.... Read moreMRI Scan Breakthrough to Help Avoid Risky Invasive Tests for Heart Patients
Heart failure patients often require right heart catheterization to assess how severely their heart is struggling to pump blood, a procedure that involves inserting a tube into the heart to measure blood... Read more
MRI Scans Reveal Signature Patterns of Brain Activity to Predict Recovery from TBI
Recovery after traumatic brain injury (TBI) varies widely, with some patients regaining full function while others are left with lasting disabilities. Prognosis is especially difficult to assess in patients... Read moreUltrasound
view channel
Portable Ultrasound Sensor to Enable Earlier Breast Cancer Detection
Breast cancer screening relies heavily on annual mammograms, but aggressive tumors can develop between scans, accounting for up to 30 percent of cases. These interval cancers are often diagnosed later,... Read more
Portable Imaging Scanner to Diagnose Lymphatic Disease in Real Time
Lymphatic disorders affect hundreds of millions of people worldwide and are linked to conditions ranging from limb swelling and organ dysfunction to birth defects and cancer-related complications.... Read more
Imaging Technique Generates Simultaneous 3D Color Images of Soft-Tissue Structure and Vasculature
Medical imaging tools often force clinicians to choose between speed, structural detail, and functional insight. Ultrasound is fast and affordable but typically limited to two-dimensional anatomy, while... Read moreNuclear Medicine
view channel
Radiopharmaceutical Molecule Marker to Improve Choice of Bladder Cancer Therapies
Targeted cancer therapies only work when tumor cells express the specific molecular structures they are designed to attack. In urothelial carcinoma, a common form of bladder cancer, the cell surface protein... Read more
Cancer “Flashlight” Shows Who Can Benefit from Targeted Treatments
Targeted cancer therapies can be highly effective, but only when a patient’s tumor expresses the specific protein the treatment is designed to attack. Determining this usually requires biopsies or advanced... Read moreImaging IT
view channel
New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible
Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Global AI in Medical Diagnostics Market to Be Driven by Demand for Image Recognition in Radiology
The global artificial intelligence (AI) in medical diagnostics market is expanding with early disease detection being one of its key applications and image recognition becoming a compelling consumer proposition... Read moreIndustry News
view channel
Nuclear Medicine Set for Continued Growth Driven by Demand for Precision Diagnostics
Clinical imaging services face rising demand for precise molecular diagnostics and targeted radiopharmaceutical therapy as cancer and chronic disease rates climb. A new market analysis projects rapid expansion... Read more






 Guided Devices.jpg)
