Residual Gadolinium May Persist in Brain for Years
By MedImaging International staff writers Posted on 29 Dec 2016 |

Image: Evidence of residual gadolinium in the brain (Photo courtesy of Emanuel Kanal/UPMC).
New studies reveal that gadolinium based contrast agents (GBCA) used in magnetic resonance imaging (MRI) exams may remain in the brain for years, but the long-term effects are unknown.
A series of three recent studies raise new questions about residual gadolinium concentrations in the brains of patients with no history of kidney disease. The first, conducted at Teikyo University (Tokyo, Japan), examined brain tissues from five autopsied patients who had undergone multiple GBCA MRI exams and five patients with no gadolinium history. The study, published in the November 2016 issue of the Japanese Journal of Radiology, found that even in patients without severe renal dysfunction, gadolinium accumulated in the brain.
The findings of the Japanese study lend support to the results of a study at the Mayo Clinic (Rochester, MN, USA), published in the March 2016 issue of Radiology, which showed residual gadolinium deposits present in the postmortem brains of 13 patients who had undergone at least four GBCA contrast MRI exams. Neither the Teikyo University nor the Mayo clinic study was able to identify whether the residual gadolinium was in free or chelated form.
A third study, by the University of Heidelberg (Germany), published in the June 2015 issue of Radiology, retrospectively looked at two groups of 50 patients who had undergone at least six MRI exams, suggests that the molecular structure of the gadolinium contrast agent may play a role in retention. There are two structurally distinct categories of GBCA: linear and macrocyclic. In the macrocyclic structure, the gadolinium is bound more tightly to the chelating agent and, therefore, less likely to release free gadolinium into the body.
“We now have clear evidence that the administration of various gadolinium-based contrast agents results in notably varied levels of accumulation of residual gadolinium in the brain. What we still don’t know is the clinical significance, if any, of this observation,” commented professor of radiology and neuroradiology Emanuel Kanal, MD, director of magnetic resonance services at University of Pittsburgh Medical Center (UPMC, PA, USA). “We cannot unnecessarily deprive our patients of crucial, even life-saving medical data from gadolinium contrast-enhanced MRI. Nor can we ignore these new findings and continue prescribing them as we have until now, without change.”
Gadolinium--a rare earth heavy metal--is used for enhancement during MRI. Neurotoxic effects have been seen in animals and when a GBCA is given intrathecally in humans. On its own, gadolinium can be toxic; therefore, when used in contrast agents, gadolinium is bonded with a molecule called a chelating agent, which controls the distribution of gadolinium within the body. In July 2015, the U.S. Food and Drug Administration (FDA) stated that it was unknown whether gadolinium deposits in the brain were harmful.
Related Links:
Teikyo University
Mayo Clinic
University of Heidelberg
University of Pittsburgh Medical Center
A series of three recent studies raise new questions about residual gadolinium concentrations in the brains of patients with no history of kidney disease. The first, conducted at Teikyo University (Tokyo, Japan), examined brain tissues from five autopsied patients who had undergone multiple GBCA MRI exams and five patients with no gadolinium history. The study, published in the November 2016 issue of the Japanese Journal of Radiology, found that even in patients without severe renal dysfunction, gadolinium accumulated in the brain.
The findings of the Japanese study lend support to the results of a study at the Mayo Clinic (Rochester, MN, USA), published in the March 2016 issue of Radiology, which showed residual gadolinium deposits present in the postmortem brains of 13 patients who had undergone at least four GBCA contrast MRI exams. Neither the Teikyo University nor the Mayo clinic study was able to identify whether the residual gadolinium was in free or chelated form.
A third study, by the University of Heidelberg (Germany), published in the June 2015 issue of Radiology, retrospectively looked at two groups of 50 patients who had undergone at least six MRI exams, suggests that the molecular structure of the gadolinium contrast agent may play a role in retention. There are two structurally distinct categories of GBCA: linear and macrocyclic. In the macrocyclic structure, the gadolinium is bound more tightly to the chelating agent and, therefore, less likely to release free gadolinium into the body.
“We now have clear evidence that the administration of various gadolinium-based contrast agents results in notably varied levels of accumulation of residual gadolinium in the brain. What we still don’t know is the clinical significance, if any, of this observation,” commented professor of radiology and neuroradiology Emanuel Kanal, MD, director of magnetic resonance services at University of Pittsburgh Medical Center (UPMC, PA, USA). “We cannot unnecessarily deprive our patients of crucial, even life-saving medical data from gadolinium contrast-enhanced MRI. Nor can we ignore these new findings and continue prescribing them as we have until now, without change.”
Gadolinium--a rare earth heavy metal--is used for enhancement during MRI. Neurotoxic effects have been seen in animals and when a GBCA is given intrathecally in humans. On its own, gadolinium can be toxic; therefore, when used in contrast agents, gadolinium is bonded with a molecule called a chelating agent, which controls the distribution of gadolinium within the body. In July 2015, the U.S. Food and Drug Administration (FDA) stated that it was unknown whether gadolinium deposits in the brain were harmful.
Related Links:
Teikyo University
Mayo Clinic
University of Heidelberg
University of Pittsburgh Medical Center
Latest Radiography News
- AI Detects Fatty Liver Disease from Chest X-Rays
- AI Detects Hidden Heart Disease in Existing CT Chest Scans
- Ultra-Lightweight AI Model Runs Without GPU to Break Barriers in Lung Cancer Diagnosis
- AI Radiology Tool Identifies Life-Threatening Conditions in Milliseconds
- Machine Learning Algorithm Identifies Cardiovascular Risk from Routine Bone Density Scans
- AI Improves Early Detection of Interval Breast Cancers
- World's Largest Class Single Crystal Diamond Radiation Detector Opens New Possibilities for Diagnostic Imaging
- AI-Powered Imaging Technique Shows Promise in Evaluating Patients for PCI
- Higher Chest X-Ray Usage Catches Lung Cancer Earlier and Improves Survival
- AI-Powered Mammograms Predict Cardiovascular Risk
- Generative AI Model Significantly Reduces Chest X-Ray Reading Time
- AI-Powered Mammography Screening Boosts Cancer Detection in Single-Reader Settings
- Photon Counting Detectors Promise Fast Color X-Ray Images
- AI Can Flag Mammograms for Supplemental MRI
- 3D CT Imaging from Single X-Ray Projection Reduces Radiation Exposure
- AI Method Accurately Predicts Breast Cancer Risk by Analyzing Multiple Mammograms
Channels
MRI
view channel
AI Model Outperforms Doctors at Identifying Patients Most At-Risk of Cardiac Arrest
Hypertrophic cardiomyopathy is one of the most common inherited heart conditions and a leading cause of sudden cardiac death in young individuals and athletes. While many patients live normal lives, some... Read more
New MRI Technique Reveals Hidden Heart Issues
Traditional exercise stress tests conducted within an MRI machine require patients to lie flat, a position that artificially improves heart function by increasing stroke volume due to gravity-driven blood... Read moreUltrasound
view channel
Wireless Chronic Pain Management Device to Reduce Need for Painkillers and Surgery
Chronic pain affects millions of people globally, often leading to long-term disability and dependence on opioid medications, which carry significant risks of side effects and addiction.... Read more
New Medical Ultrasound Imaging Technique Enables ICU Bedside Monitoring
Ultrasound computed tomography (USCT) presents a safer alternative to imaging techniques like X-ray computed tomography (commonly known as CT or “CAT” scans) because it does not produce ionizing radiation.... Read moreNuclear Medicine
view channel
Novel Bacteria-Specific PET Imaging Approach Detects Hard-To-Diagnose Lung Infections
Mycobacteroides abscessus is a rapidly growing mycobacteria that primarily affects immunocompromised patients and those with underlying lung diseases, such as cystic fibrosis or chronic obstructive pulmonary... Read more
New Imaging Approach Could Reduce Need for Biopsies to Monitor Prostate Cancer
Prostate cancer is the second leading cause of cancer-related death among men in the United States. However, the majority of older men diagnosed with prostate cancer have slow-growing, low-risk forms of... Read moreGeneral/Advanced Imaging
view channel
CT Colonography Beats Stool DNA Testing for Colon Cancer Screening
As colorectal cancer remains the second leading cause of cancer-related deaths worldwide, early detection through screening is vital to reduce advanced-stage treatments and associated costs.... Read more
First-Of-Its-Kind Wearable Device Offers Revolutionary Alternative to CT Scans
Currently, patients with conditions such as heart failure, pneumonia, or respiratory distress often require multiple imaging procedures that are intermittent, disruptive, and involve high levels of radiation.... Read more
AI-Based CT Scan Analysis Predicts Early-Stage Kidney Damage Due to Cancer Treatments
Radioligand therapy, a form of targeted nuclear medicine, has recently gained attention for its potential in treating specific types of tumors. However, one of the potential side effects of this therapy... Read moreImaging IT
view channel
New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible
Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Global AI in Medical Diagnostics Market to Be Driven by Demand for Image Recognition in Radiology
The global artificial intelligence (AI) in medical diagnostics market is expanding with early disease detection being one of its key applications and image recognition becoming a compelling consumer proposition... Read moreIndustry News
view channel
GE HealthCare and NVIDIA Collaboration to Reimagine Diagnostic Imaging
GE HealthCare (Chicago, IL, USA) has entered into a collaboration with NVIDIA (Santa Clara, CA, USA), expanding the existing relationship between the two companies to focus on pioneering innovation in... Read more
Patient-Specific 3D-Printed Phantoms Transform CT Imaging
New research has highlighted how anatomically precise, patient-specific 3D-printed phantoms are proving to be scalable, cost-effective, and efficient tools in the development of new CT scan algorithms... Read more
Siemens and Sectra Collaborate on Enhancing Radiology Workflows
Siemens Healthineers (Forchheim, Germany) and Sectra (Linköping, Sweden) have entered into a collaboration aimed at enhancing radiologists' diagnostic capabilities and, in turn, improving patient care... Read more