Imaging Agent Identifies Alzheimer's Disease Brain Toxins
By MedImaging staff writers Posted on 28 Apr 2008 |
A landmark study by Alzheimer's disease (AD) researchers confirmed that Pittsburgh compound-B (PiB), an imaging agent, binds to the characteristic beta-amyloid deposits found in the brains of patients with AD. The finding is a significant step toward enabling clinicians to provide a definitive diagnosis of Alzheimer's disease in living patients.
Until now, the beta-amyloid deposits to which PiB binds were confirmed only in the autopsied brains of patients afflicted with Alzheimer's. The new findings, which correlate PiB-identified beta-amyloid deposits from living patients to their post-mortem autopsy results, will ultimately aid in the early diagnosis of AD, help clinicians monitor the progression of the disease, and further the development of potential treatments.
"This is final confirmation of what we have believed all along--that Pittsburgh compound-B allows us to accurately assess the amount of beta-amyloid plaques in brains of people afflicted with Alzheimer's,” said senior author Steven DeKosky, M.D., professor of neurology, psychiatry, neurobiology, and human genetics and director of the Alzheimer's Disease Research Center at the University of Pittsburgh (Pitt; PA, USA).
Developed by Pitt researchers Chester Mathis, Ph.D., professor of radiology and pharmaceutical sciences, and William Klunk, M.D., Ph.D., professor of psychiatry and neurology, PiB is a radioactive compound that, when coupled with positron emission tomography (PET) imaging, can be injected into the bloodstream to enable researchers to visualize the brains of people with the memory-stealing disorder and visualize the location and distribution of the beta-amyloid plaque deposits associated with AD. The distinguishing factor between AD and other dementias is the presence of these amyloid plaques, which are thought to kill brain cells.
In the study, a 63-year-old woman with a clinical diagnosis of Alzheimer's underwent PiB PET imaging. The PET scan showed significant retention of PiB in distinct regions of her brain. Upon her death 10 months later, her autopsied brain was analyzed using histologic and biochemical assays to detect a variety of amyloid deposits, including the beta-amyloid plaques. The regions of her brain where the PET scans had identified the highest PiB levels before death correlated precisely with the regions of high beta-amyloid plaque concentrations in her autopsied brain.
Beta-amyloid plaques, the hallmark of AD, are just one type of amyloid structure that can be found in diseased brains. However, other forms of amyloid are not thought to be specific for Alzheimer's, or they have significantly different roles in the pathogenesis of this disease. To additionally validate the binding properties of PiB to beta-amyloid and the presence of Alzheimer's disease, sophisticated laboratory studies were performed on the autopsied brains of 27 other patients with confirmed AD disease.
"In every subject, and with each test that we performed, our results supported the idea that PiB binds almost exclusively to beta-amyloid, which means that we can, with confidence, look to PiB to indicate the troublesome beta-amyloid deposits in brains of living patients,” said the lead author Milos Ikonomovic, M.D., assistant professor of neurology and psychiatry at the University of Pittsburgh.
The study was published in the Advance Access online edition of the journal Brain on March 12, 2008.
Related Links:
University of Pittsburgh
Until now, the beta-amyloid deposits to which PiB binds were confirmed only in the autopsied brains of patients afflicted with Alzheimer's. The new findings, which correlate PiB-identified beta-amyloid deposits from living patients to their post-mortem autopsy results, will ultimately aid in the early diagnosis of AD, help clinicians monitor the progression of the disease, and further the development of potential treatments.
"This is final confirmation of what we have believed all along--that Pittsburgh compound-B allows us to accurately assess the amount of beta-amyloid plaques in brains of people afflicted with Alzheimer's,” said senior author Steven DeKosky, M.D., professor of neurology, psychiatry, neurobiology, and human genetics and director of the Alzheimer's Disease Research Center at the University of Pittsburgh (Pitt; PA, USA).
Developed by Pitt researchers Chester Mathis, Ph.D., professor of radiology and pharmaceutical sciences, and William Klunk, M.D., Ph.D., professor of psychiatry and neurology, PiB is a radioactive compound that, when coupled with positron emission tomography (PET) imaging, can be injected into the bloodstream to enable researchers to visualize the brains of people with the memory-stealing disorder and visualize the location and distribution of the beta-amyloid plaque deposits associated with AD. The distinguishing factor between AD and other dementias is the presence of these amyloid plaques, which are thought to kill brain cells.
In the study, a 63-year-old woman with a clinical diagnosis of Alzheimer's underwent PiB PET imaging. The PET scan showed significant retention of PiB in distinct regions of her brain. Upon her death 10 months later, her autopsied brain was analyzed using histologic and biochemical assays to detect a variety of amyloid deposits, including the beta-amyloid plaques. The regions of her brain where the PET scans had identified the highest PiB levels before death correlated precisely with the regions of high beta-amyloid plaque concentrations in her autopsied brain.
Beta-amyloid plaques, the hallmark of AD, are just one type of amyloid structure that can be found in diseased brains. However, other forms of amyloid are not thought to be specific for Alzheimer's, or they have significantly different roles in the pathogenesis of this disease. To additionally validate the binding properties of PiB to beta-amyloid and the presence of Alzheimer's disease, sophisticated laboratory studies were performed on the autopsied brains of 27 other patients with confirmed AD disease.
"In every subject, and with each test that we performed, our results supported the idea that PiB binds almost exclusively to beta-amyloid, which means that we can, with confidence, look to PiB to indicate the troublesome beta-amyloid deposits in brains of living patients,” said the lead author Milos Ikonomovic, M.D., assistant professor of neurology and psychiatry at the University of Pittsburgh.
The study was published in the Advance Access online edition of the journal Brain on March 12, 2008.
Related Links:
University of Pittsburgh
Latest Nuclear Medicine News
- Novel Radiolabeled Antibody Improves Diagnosis and Treatment of Solid Tumors
- Novel PET Imaging Approach Offers Never-Before-Seen View of Neuroinflammation
- Novel Radiotracer Identifies Biomarker for Triple-Negative Breast Cancer
- Innovative PET Imaging Technique to Help Diagnose Neurodegeneration
- New Molecular Imaging Test to Improve Lung Cancer Diagnosis
- Novel PET Technique Visualizes Spinal Cord Injuries to Predict Recovery
- Next-Gen Tau Radiotracers Outperform FDA-Approved Imaging Agents in Detecting Alzheimer’s
- Breakthrough Method Detects Inflammation in Body Using PET Imaging
- Advanced Imaging Reveals Hidden Metastases in High-Risk Prostate Cancer Patients
- Combining Advanced Imaging Technologies Offers Breakthrough in Glioblastoma Treatment
- New Molecular Imaging Agent Accurately Identifies Crucial Cancer Biomarker
- New Scans Light Up Aggressive Tumors for Better Treatment
- AI Stroke Brain Scan Readings Twice as Accurate as Current Method
- AI Analysis of PET/CT Images Predicts Side Effects of Immunotherapy in Lung Cancer
- New Imaging Agent to Drive Step-Change for Brain Cancer Imaging
- Portable PET Scanner to Detect Earliest Stages of Alzheimer’s Disease
Channels
Radiography
view channel
Machine Learning Algorithm Identifies Cardiovascular Risk from Routine Bone Density Scans
A new study published in the Journal of Bone and Mineral Research reveals that an automated machine learning program can predict the risk of cardiovascular events and falls or fractures by analyzing bone... Read more
AI Improves Early Detection of Interval Breast Cancers
Interval breast cancers, which occur between routine screenings, are easier to treat when detected earlier. Early detection can reduce the need for aggressive treatments and improve the chances of better outcomes.... Read more
World's Largest Class Single Crystal Diamond Radiation Detector Opens New Possibilities for Diagnostic Imaging
Diamonds possess ideal physical properties for radiation detection, such as exceptional thermal and chemical stability along with a quick response time. Made of carbon with an atomic number of six, diamonds... Read moreMRI
view channel
Cutting-Edge MRI Technology to Revolutionize Diagnosis of Common Heart Problem
Aortic stenosis is a common and potentially life-threatening heart condition. It occurs when the aortic valve, which regulates blood flow from the heart to the rest of the body, becomes stiff and narrow.... Read more
New MRI Technique Reveals True Heart Age to Prevent Attacks and Strokes
Heart disease remains one of the leading causes of death worldwide. Individuals with conditions such as diabetes or obesity often experience accelerated aging of their hearts, sometimes by decades.... Read more
AI Tool Predicts Relapse of Pediatric Brain Cancer from Brain MRI Scans
Many pediatric gliomas are treatable with surgery alone, but relapses can be catastrophic. Predicting which patients are at risk for recurrence remains challenging, leading to frequent follow-ups with... Read more
AI Tool Tracks Effectiveness of Multiple Sclerosis Treatments Using Brain MRI Scans
Multiple sclerosis (MS) is a condition in which the immune system attacks the brain and spinal cord, leading to impairments in movement, sensation, and cognition. Magnetic Resonance Imaging (MRI) markers... Read moreUltrasound
view channel.jpeg)
AI-Powered Lung Ultrasound Outperforms Human Experts in Tuberculosis Diagnosis
Despite global declines in tuberculosis (TB) rates in previous years, the incidence of TB rose by 4.6% from 2020 to 2023. Early screening and rapid diagnosis are essential elements of the World Health... Read more
AI Identifies Heart Valve Disease from Common Imaging Test
Tricuspid regurgitation is a condition where the heart's tricuspid valve does not close completely during contraction, leading to backward blood flow, which can result in heart failure. A new artificial... Read moreGeneral/Advanced Imaging
view channel
AI-Based CT Scan Analysis Predicts Early-Stage Kidney Damage Due to Cancer Treatments
Radioligand therapy, a form of targeted nuclear medicine, has recently gained attention for its potential in treating specific types of tumors. However, one of the potential side effects of this therapy... Read more
CT-Based Deep Learning-Driven Tool to Enhance Liver Cancer Diagnosis
Medical imaging, such as computed tomography (CT) scans, plays a crucial role in oncology, offering essential data for cancer detection, treatment planning, and monitoring of response to therapies.... Read moreImaging IT
view channel
New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible
Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Global AI in Medical Diagnostics Market to Be Driven by Demand for Image Recognition in Radiology
The global artificial intelligence (AI) in medical diagnostics market is expanding with early disease detection being one of its key applications and image recognition becoming a compelling consumer proposition... Read moreIndustry News
view channel
GE HealthCare and NVIDIA Collaboration to Reimagine Diagnostic Imaging
GE HealthCare (Chicago, IL, USA) has entered into a collaboration with NVIDIA (Santa Clara, CA, USA), expanding the existing relationship between the two companies to focus on pioneering innovation in... Read more
Patient-Specific 3D-Printed Phantoms Transform CT Imaging
New research has highlighted how anatomically precise, patient-specific 3D-printed phantoms are proving to be scalable, cost-effective, and efficient tools in the development of new CT scan algorithms... Read more
Siemens and Sectra Collaborate on Enhancing Radiology Workflows
Siemens Healthineers (Forchheim, Germany) and Sectra (Linköping, Sweden) have entered into a collaboration aimed at enhancing radiologists' diagnostic capabilities and, in turn, improving patient care... Read more