We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

MedImaging

Download Mobile App
Recent News Radiography MRI Ultrasound Nuclear Medicine General/Advanced Imaging Imaging IT Industry News

Quantitative Ultrasound Technique Assesses Lung Health

By MedImaging International staff writers
Posted on 26 Oct 2020
Print article
A new ultrasound technique can quantify lung scarring and pulmonary edema (PE), providing a more affordable option than computerized tomography (CT).

Developed by researchers at the University of North Carolina (UNC; Chapel Hill, USA) and North Carolina State University (NCSU; Raleigh, USA), the innovative lung assessment method uses ultrasound transducer data to map the micro-architecture of lung parenchyma. A smart computational model extrapolates the multiple scattering echoes of the ultrasound waves to calculate the density of healthy alveoli in the lungs, and in turn offer a quantitative assessment of idiopathic pulmonary fibrosis (IPF) tissue in the lungs, as well as PE levels.

In order to verify the hypothesis that in a fibrotic lung, the thickening of the alveolar wall reduces the amount of air, thus minimizing scattering events, the researchers induced IPF in Sprague-Dawley rats by instilling bleomycin into the airway. After three weeks, a 128-element linear array transducer operating at 7.8 MHz was used to evaluate mean free path level and backscatter frequency shift (BFS). The results showed significant differences between control and fibrotic rats in both values. The study was published on October 15, 2020, in IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.

“Automated quantitative assessment would allow the technology to be used by personnel with minimal training, and would allow healthcare providers to compare data across time. Caregivers would be able to tell if a patient’s edema is getting better or worse,” said co-senior author Marie Muller, PhD, of NCSU. “Being able to monitor pulmonary edema in patients with heart failure would also be very useful. This is often done by assessing fluctuations in a patient’s body weight in order to estimate how much fluid has collected in the patient’s lungs, which is not as specific as we’d like it to be.”

The speed at which sound waves propagate within tissue is determined by the density and stiffness of the tissue, rather than by characteristics of the sound waves themselves, and is inversely proportional to tissue density and directly proportional to stiffness of the tissue; i.e., the denser the tissue, the slower the propagation velocity, while the stiffer the tissue, the higher the velocity. Propagation speed is slowest through air and fat, and fastest through muscle and bone. Ultrasound propagation in a highly scattering regime follows a diffusion process.

Related Links:
University of North Carolina
North Carolina State University


Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
New
Digital Radiography Generator
meX+20BT lite
New
Ultrasound Table
Ergonomic Advantage (EA) Line
New
Ultrasound Table
Powered Ultrasound Table-Flat Top

Print article

Channels

Nuclear Medicine

view channel
Image: The multi-spectral optoacoustic tomography (MSOT) machine generates images of biological tissues (Photo courtesy of University of Missouri)

New Imaging Technique Monitors Inflammation Disorders without Radiation Exposure

Imaging inflammation using traditional radiological techniques presents significant challenges, including radiation exposure, poor image quality, high costs, and invasive procedures. Now, new contrast... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more