We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

MedImaging

Download Mobile App
Recent News Radiography MRI Ultrasound Nuclear Medicine General/Advanced Imaging Imaging IT Industry News

Hypofractionated Radiation Acceptable for Localized Prostate Cancer

By MedImaging International staff writers
Posted on 05 Nov 2018
Print article
A new study supports the use of shortened courses of radiation therapy (RT) for early-stage prostate cancer (PC).

Researchers at the University of Ottawa (Canada), Cedars-Sinai Medical Center (Los Angeles, CA, USA), Vanderbilt University Medical Center (VUMC; Nashville, TN, USA), and other institutions participating in a new task force convened by the American Society for Radiation Oncology (ASTRO) conducted a systematic literature review to address key questions and develop an evidence-based guideline for dose-fractionation RT for early-stage PC.

Among the issues discussed were technical aspects, including normal tissue dose constraints, treatment volumes, and use of image guided RT (IMRT) and intensity modulated RT (IMRT). Based on high-quality evidence, a strong consensus was reached to offer moderate hypofractionation across risk groups to patients choosing external beam RT (EBRT), and recommended ultrahypofractionated RT for low- and intermediate-risk PC. For high-risk patients, the routine use of ultrahypofractionated EBRT was not recommended. The study was published on October 11, 2018, in Practical Radiation Oncology.

“These recommendations are intended to provide guidance on moderate hypofractionation and ultrahypofractionation for localized prostate cancer. Men who opt to receive hypofractionated radiation therapy will be able to receive a shorter course of treatment,” concluded lead author Scott Morgan, MD, of the University of Ottawa, and colleagues. “The limits in the current evidentiary base, especially for ultrahypofractionation, highlight the imperative to support large-scale randomized clinical trials and underscore the importance of shared decision making between clinicians and patients.”

RT fractionation is defined as a fraction size of 180 to 200 cGy. Hypofractionation is subdivided into moderate hypofractionation (240-340 cGy) and ultrahypofractionation (a fraction size higher 500 cGy). These pragmatic definitions reflect two distinct approaches to hypofractionation that have emerged in clinical practice. The fraction size gap created (i.e., the gap from 340 cGy and 500 cGy) represents a little-studied range.

Related Links:
University of Ottawa
Cedars-Sinai Medical Center
Vanderbilt University Medical Center


Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
PACS Workstation
CHILI Web Viewer
New
Compact C-Arm
Arcovis DRF-C S21
New
Ultrasound Table
Ergonomic Advantage (EA) Line

Print article

Channels

Ultrasound

view channel
Image: Microscopic heart vessels have been imaged in super-resolution for the first time (Photo courtesy of Imperial College)

Super-Resolution Imaging Technique Could Improve Evaluation of Cardiac Conditions

The heart depends on efficient blood circulation to pump blood throughout the body, delivering oxygen to tissues and removing carbon dioxide and waste. Yet, when heart vessels are damaged, it can disrupt... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more