We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

MedImaging

Download Mobile App
Recent News Radiography MRI Ultrasound Nuclear Medicine General/Advanced Imaging Imaging IT Industry News

Evaluating Chitosan Nerve Conduits That Bridge Sciatic Nerve Defects Visualized Using Ultrasound Imaging

By MedImaging International staff writers
Posted on 27 Aug 2014
Print article
Image: Ultrasound image of the morphology of a chitosan nerve conduit in a rat model of sciatic nerve defects at three weeks after modeling (Photo courtesy of Neural Regeneration Research journal).
Image: Ultrasound image of the morphology of a chitosan nerve conduit in a rat model of sciatic nerve defects at three weeks after modeling (Photo courtesy of Neural Regeneration Research journal).
The first use of ultrasound has been used by Chinese researchers to noninvasively observe the changes in chitosan nerve conduits implanted in lab rats over time.

The investigators reported that newer, simpler, and more effective ways are needed to better assess the outcomes of repair using nerve conduits in vivo. The new technology distinctly revealed whether there are unsatisfactory complications after implantation, such as fracture, collapse, bleeding, or unusual swelling of the nerve conduits; and reflected the degradation mode of the nerve conduit in vivo over time.

Ultrasound is a common noninvasive clinical detection modality that has been used in many fields. However, ultrasound has seldom been used to observe implanted nerve conduits in vivo.

Dr. Hongkui Wang and coworkers from Affiliated Hospital of Nantong University (Nantong, Jiangsu Province, China) reported on their findings July 15, 2014, in the journal Neural Regeneration Research. Ultrasound, as a noninvasive imaging modality, they noted, can be used as a supplementary observation technique during standard animal research on peripheral nerve tissue engineering.

Related Links:

Affiliated Hospital of Nantong University


Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
New
Ultrasound Table
Powered Ultrasound Table-Flat Top
Ultrasound System
Acclarix AX9
Ultrasound Software
UltraExtend NX

Print article

Channels

MRI

view channel
Image: Diamond dust offers a potential alternative to the widely used contrast agent gadolinium in MRI (Photo courtesy of Max Planck Institute)

Diamond Dust Could Offer New Contrast Agent Option for Future MRI Scans

Gadolinium, a heavy metal used for over three decades as a contrast agent in medical imaging, enhances the clarity of MRI scans by highlighting affected areas. Despite its utility, gadolinium not only... Read more

Nuclear Medicine

view channel
Image: The multi-spectral optoacoustic tomography (MSOT) machine generates images of biological tissues (Photo courtesy of University of Missouri)

New Imaging Technique Monitors Inflammation Disorders without Radiation Exposure

Imaging inflammation using traditional radiological techniques presents significant challenges, including radiation exposure, poor image quality, high costs, and invasive procedures. Now, new contrast... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more