Drug Delivery System Uses Ultrasound-Activated Nanoparticles to Destroy Bacterial Biofilms
By MedImaging International staff writers Posted on 28 Apr 2025 |

Chronic antibiotic-resistant infections have become a global health crisis, impacting hundreds of millions of individuals worldwide. In as many as 80% of chronic infections, bacteria form biofilms—slimy substances secreted by bacteria that create a protective matrix around them. Biofilms play a significant role in antimicrobial resistance, as they shield bacteria from both human immune responses and antimicrobial drugs, increasing their resistance to treatment by up to 1000 times. These biofilms are found in various difficult-to-treat infections, including chronic wounds, urinary tract infections, cystic fibrosis-related lung infections, and even acne. Biofilms are particularly challenging to remove without mechanically breaking them up, which is not easy to do within the body. Researchers have now developed a novel drug delivery system using ultrasound-activated nanoparticles to penetrate and destroy bacterial biofilms.
Researchers at the University of Oxford (Oxford, UK) achieved this by engineering antibiotic-loaded nanoparticles, that, when activated by ultrasound, rapidly vaporize. This vaporization not only disrupts biofilms physically but also releases drugs directly at the infection site. A key advantage of this approach is that ultrasound can be precisely targeted deep within the body, offering a non-invasive way to treat infections. The nanoparticles were tested on 10 clinical bacterial strains, including E. Coli and methicillin-resistant Staphylococcus aureus (MRSA), delivering four different antibiotics. For bacteria that did not form biofilms, the combination of nanoparticles and ultrasound reduced the amount of antibiotic required to inhibit bacterial growth by more than 10 times compared to conventional treatments.
The study, published in npj Antimicrobials and Resistance, showed that the combination of nanoparticles and ultrasound was even more effective in biofilm infections, reducing the antibiotic concentration required by more than 40-fold, and completely eliminating 100% of the bacteria at clinically feasible doses. A critical finding was that this system proved highly effective against persister cells—dormant bacteria that typically survive treatments and are responsible for infections recurring. To eliminate these persister cells, very high doses of antibiotics are often required, which can be dangerous or impossible to administer to patients. The nanoparticles reduced the drug concentration necessary to kill persister cells by 25 times compared to conventional antibiotics. The team is now working on optimizing the nanoparticle manufacturing process so that it can be tested in clinical settings as soon as possible.
“Innovative solutions are desperately needed to extend the action of life-saving antibiotics,” said Professor Eleanor Stride, Professor of Biomaterials, University of Oxford and Principal Investigator of the project. “Our findings are very promising, as treatment of chronic infections associated with biofilm production continues to be a challenge in the face of spreading antimicrobial resistance worldwide. The methods we used in this study were designed with clinical use in mind, and we look forward to developing this system further for application in healthcare settings.”
Latest Ultrasound News
- AI-Powered Lung Ultrasound Outperforms Human Experts in Tuberculosis Diagnosis
- AI Identifies Heart Valve Disease from Common Imaging Test
- Novel Imaging Method Enables Early Diagnosis and Treatment Monitoring of Type 2 Diabetes
- Ultrasound-Based Microscopy Technique to Help Diagnose Small Vessel Diseases
- Smart Ultrasound-Activated Immune Cells Destroy Cancer Cells for Extended Periods
- Tiny Magnetic Robot Takes 3D Scans from Deep Within Body
- High Resolution Ultrasound Speeds Up Prostate Cancer Diagnosis
- World's First Wireless, Handheld, Whole-Body Ultrasound with Single PZT Transducer Makes Imaging More Accessible
- Artificial Intelligence Detects Undiagnosed Liver Disease from Echocardiograms
- Ultrasound Imaging Non-Invasively Tracks Tumor Response to Radiation and Immunotherapy
- AI Improves Detection of Congenital Heart Defects on Routine Prenatal Ultrasounds
- AI Diagnoses Lung Diseases from Ultrasound Videos with 96.57% Accuracy
- New Contrast Agent for Ultrasound Imaging Ensures Affordable and Safer Medical Diagnostics
- Ultrasound-Directed Microbubbles Boost Immune Response Against Tumors
- POC Ultrasound Enhances Early Pregnancy Care and Cuts Emergency Visits
- AI-Based Models Outperform Human Experts at Identifying Ovarian Cancer in Ultrasound Images
Channels
Radiography
view channel
World's Largest Class Single Crystal Diamond Radiation Detector Opens New Possibilities for Diagnostic Imaging
Diamonds possess ideal physical properties for radiation detection, such as exceptional thermal and chemical stability along with a quick response time. Made of carbon with an atomic number of six, diamonds... Read more
AI-Powered Imaging Technique Shows Promise in Evaluating Patients for PCI
Percutaneous coronary intervention (PCI), also known as coronary angioplasty, is a minimally invasive procedure where small metal tubes called stents are inserted into partially blocked coronary arteries... Read moreMRI
view channel
AI Tool Predicts Relapse of Pediatric Brain Cancer from Brain MRI Scans
Many pediatric gliomas are treatable with surgery alone, but relapses can be catastrophic. Predicting which patients are at risk for recurrence remains challenging, leading to frequent follow-ups with... Read more
AI Tool Tracks Effectiveness of Multiple Sclerosis Treatments Using Brain MRI Scans
Multiple sclerosis (MS) is a condition in which the immune system attacks the brain and spinal cord, leading to impairments in movement, sensation, and cognition. Magnetic Resonance Imaging (MRI) markers... Read more
Ultra-Powerful MRI Scans Enable Life-Changing Surgery in Treatment-Resistant Epileptic Patients
Approximately 360,000 individuals in the UK suffer from focal epilepsy, a condition in which seizures spread from one part of the brain. Around a third of these patients experience persistent seizures... Read moreUltrasound
view channel.jpeg)
AI-Powered Lung Ultrasound Outperforms Human Experts in Tuberculosis Diagnosis
Despite global declines in tuberculosis (TB) rates in previous years, the incidence of TB rose by 4.6% from 2020 to 2023. Early screening and rapid diagnosis are essential elements of the World Health... Read more
AI Identifies Heart Valve Disease from Common Imaging Test
Tricuspid regurgitation is a condition where the heart's tricuspid valve does not close completely during contraction, leading to backward blood flow, which can result in heart failure. A new artificial... Read moreNuclear Medicine
view channel
Novel Radiolabeled Antibody Improves Diagnosis and Treatment of Solid Tumors
Interleukin-13 receptor α-2 (IL13Rα2) is a cell surface receptor commonly found in solid tumors such as glioblastoma, melanoma, and breast cancer. It is minimally expressed in normal tissues, making it... Read more
Novel PET Imaging Approach Offers Never-Before-Seen View of Neuroinflammation
COX-2, an enzyme that plays a key role in brain inflammation, can be significantly upregulated by inflammatory stimuli and neuroexcitation. Researchers suggest that COX-2 density in the brain could serve... Read moreGeneral/Advanced Imaging
view channel
AI-Powered Imaging System Improves Lung Cancer Diagnosis
Given the need to detect lung cancer at earlier stages, there is an increasing need for a definitive diagnostic pathway for patients with suspicious pulmonary nodules. However, obtaining tissue samples... Read more
AI Model Significantly Enhances Low-Dose CT Capabilities
Lung cancer remains one of the most challenging diseases, making early diagnosis vital for effective treatment. Fortunately, advancements in artificial intelligence (AI) are revolutionizing lung cancer... Read moreImaging IT
view channel
New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible
Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Global AI in Medical Diagnostics Market to Be Driven by Demand for Image Recognition in Radiology
The global artificial intelligence (AI) in medical diagnostics market is expanding with early disease detection being one of its key applications and image recognition becoming a compelling consumer proposition... Read moreIndustry News
view channel
GE HealthCare and NVIDIA Collaboration to Reimagine Diagnostic Imaging
GE HealthCare (Chicago, IL, USA) has entered into a collaboration with NVIDIA (Santa Clara, CA, USA), expanding the existing relationship between the two companies to focus on pioneering innovation in... Read more
Patient-Specific 3D-Printed Phantoms Transform CT Imaging
New research has highlighted how anatomically precise, patient-specific 3D-printed phantoms are proving to be scalable, cost-effective, and efficient tools in the development of new CT scan algorithms... Read more
Siemens and Sectra Collaborate on Enhancing Radiology Workflows
Siemens Healthineers (Forchheim, Germany) and Sectra (Linköping, Sweden) have entered into a collaboration aimed at enhancing radiologists' diagnostic capabilities and, in turn, improving patient care... Read more