3D CT Imaging from Single X-Ray Projection Reduces Radiation Exposure
By MedImaging International staff writers Posted on 19 Dec 2024 |

Computed tomography (CT) has long been an essential tool in modern imaging, offering detailed 3D views of the human body and other materials. However, traditional CT scans require hundreds of X-ray projections from various angles, which exposes patients to high radiation levels and demands large, immobile equipment. To overcome these challenges, researchers have developed an innovative technology called X-ray–Induced Acoustic Computed Tomography (XACT), which enables 3D imaging using a single X-ray projection.
Developed by scientists at UC Irvine (Irvine, CA, USA), XACT works by converting X-rays into ultrasound through the sound waves generated when X-rays interact with tissue. Typically, X-rays travel in straight lines, so one projection provides only 2D information. However, XACT takes advantage of the acoustic signals produced by X-rays, which propagate in three dimensions, allowing for 3D imaging from just one projection. According to the study published in Science Advances, XACT captures the acoustic waves, which travel at a speed of 1,500 meters per second, using ultrasound detectors to produce real-time 3D images without requiring mechanical scanning or complex gantry systems.
One of the key benefits of XACT is its efficiency and the reduction in radiation exposure, making it a safer and more accessible option for routine diagnostics and breast cancer screening. Additionally, with portable X-ray sources and ultrasound detectors, XACT systems can be compact and gantry-free, enabling imaging in environments where traditional CT systems are not feasible. While XACT shows great promise, it currently faces some limitations, such as resolution constraints linked to the frequency and size of the ultrasound detectors. However, future advancements in high-frequency transducers and advanced reconstruction algorithms powered by deep learning may significantly improve its capabilities.
XACT's ability to perform 3D imaging from a single X-ray projection positions it as a groundbreaking tool in both medical diagnostics and nondestructive testing for engineering and materials science. This technology eliminates the need for rotational access, allowing imaging in tighter spaces and expanding its range of applications. XACT represents a significant leap forward in imaging technology, combining lower radiation exposure, smaller system design, and increased efficiency. As the technology continues to develop, it has the potential to revolutionize medical and industrial imaging, moving us closer to a future where high-resolution, low-dose 3D imaging becomes commonplace in healthcare and beyond.
"For the first time, we have proved that 3D imaging can be obtained with a single X-ray projection based on X-ray-induced acoustic detection in both phantoms and biological tissue," said Siqi Wang, PhD, the study’s first author.
"The groundbreaking finding here is that you can make 3D X-ray imaging with just a single projection, which typically needs 600 projections or more," added Vahid Yaghmai, MD, MS, FSAR, a radiologist at UC Irvine.
Latest Radiography News
- World's Largest Class Single Crystal Diamond Radiation Detector Opens New Possibilities for Diagnostic Imaging
- AI-Powered Imaging Technique Shows Promise in Evaluating Patients for PCI
- Higher Chest X-Ray Usage Catches Lung Cancer Earlier and Improves Survival
- AI-Powered Mammograms Predict Cardiovascular Risk
- Generative AI Model Significantly Reduces Chest X-Ray Reading Time
- AI-Powered Mammography Screening Boosts Cancer Detection in Single-Reader Settings
- Photon Counting Detectors Promise Fast Color X-Ray Images
- AI Can Flag Mammograms for Supplemental MRI
- AI Method Accurately Predicts Breast Cancer Risk by Analyzing Multiple Mammograms
- Printable Organic X-Ray Sensors Could Transform Treatment for Cancer Patients
- Highly Sensitive, Foldable Detector to Make X-Rays Safer
- Novel Breast Cancer Screening Technology Could Offer Superior Alternative to Mammogram
- Artificial Intelligence Accurately Predicts Breast Cancer Years Before Diagnosis
- AI-Powered Chest X-Ray Detects Pulmonary Nodules Three Years Before Lung Cancer Symptoms
- AI Model Identifies Vertebral Compression Fractures in Chest Radiographs
- Advanced 3D Mammography Detects More Breast Cancers
Channels
MRI
view channel
AI Tool Predicts Relapse of Pediatric Brain Cancer from Brain MRI Scans
Many pediatric gliomas are treatable with surgery alone, but relapses can be catastrophic. Predicting which patients are at risk for recurrence remains challenging, leading to frequent follow-ups with... Read more
AI Tool Tracks Effectiveness of Multiple Sclerosis Treatments Using Brain MRI Scans
Multiple sclerosis (MS) is a condition in which the immune system attacks the brain and spinal cord, leading to impairments in movement, sensation, and cognition. Magnetic Resonance Imaging (MRI) markers... Read more
Ultra-Powerful MRI Scans Enable Life-Changing Surgery in Treatment-Resistant Epileptic Patients
Approximately 360,000 individuals in the UK suffer from focal epilepsy, a condition in which seizures spread from one part of the brain. Around a third of these patients experience persistent seizures... Read moreUltrasound
view channel.jpeg)
AI-Powered Lung Ultrasound Outperforms Human Experts in Tuberculosis Diagnosis
Despite global declines in tuberculosis (TB) rates in previous years, the incidence of TB rose by 4.6% from 2020 to 2023. Early screening and rapid diagnosis are essential elements of the World Health... Read more
AI Identifies Heart Valve Disease from Common Imaging Test
Tricuspid regurgitation is a condition where the heart's tricuspid valve does not close completely during contraction, leading to backward blood flow, which can result in heart failure. A new artificial... Read moreNuclear Medicine
view channel
Novel Radiolabeled Antibody Improves Diagnosis and Treatment of Solid Tumors
Interleukin-13 receptor α-2 (IL13Rα2) is a cell surface receptor commonly found in solid tumors such as glioblastoma, melanoma, and breast cancer. It is minimally expressed in normal tissues, making it... Read more
Novel PET Imaging Approach Offers Never-Before-Seen View of Neuroinflammation
COX-2, an enzyme that plays a key role in brain inflammation, can be significantly upregulated by inflammatory stimuli and neuroexcitation. Researchers suggest that COX-2 density in the brain could serve... Read moreGeneral/Advanced Imaging
view channel
AI-Powered Imaging System Improves Lung Cancer Diagnosis
Given the need to detect lung cancer at earlier stages, there is an increasing need for a definitive diagnostic pathway for patients with suspicious pulmonary nodules. However, obtaining tissue samples... Read more
AI Model Significantly Enhances Low-Dose CT Capabilities
Lung cancer remains one of the most challenging diseases, making early diagnosis vital for effective treatment. Fortunately, advancements in artificial intelligence (AI) are revolutionizing lung cancer... Read moreImaging IT
view channel
New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible
Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Global AI in Medical Diagnostics Market to Be Driven by Demand for Image Recognition in Radiology
The global artificial intelligence (AI) in medical diagnostics market is expanding with early disease detection being one of its key applications and image recognition becoming a compelling consumer proposition... Read moreIndustry News
view channel
GE HealthCare and NVIDIA Collaboration to Reimagine Diagnostic Imaging
GE HealthCare (Chicago, IL, USA) has entered into a collaboration with NVIDIA (Santa Clara, CA, USA), expanding the existing relationship between the two companies to focus on pioneering innovation in... Read more
Patient-Specific 3D-Printed Phantoms Transform CT Imaging
New research has highlighted how anatomically precise, patient-specific 3D-printed phantoms are proving to be scalable, cost-effective, and efficient tools in the development of new CT scan algorithms... Read more
Siemens and Sectra Collaborate on Enhancing Radiology Workflows
Siemens Healthineers (Forchheim, Germany) and Sectra (Linköping, Sweden) have entered into a collaboration aimed at enhancing radiologists' diagnostic capabilities and, in turn, improving patient care... Read more