New Scans Light Up Aggressive Tumors for Better Treatment
By MedImaging International staff writers Posted on 18 Dec 2024 |

Non-small cell lung cancer is the most prevalent type of lung cancer. Although standard treatments such as surgery, radiotherapy, chemotherapy, and immunotherapy have advanced, survival rates have remained relatively unchanged in the last decade. Typically, patients with lung cancer begin treatment, such as chemotherapy, and then wait 12 weeks for a CT or PET scan to assess whether the tumor has shrunk, remained stable, or grown. However, this 12-week delay can often be too late to adjust the treatment plan, and end-of-life care is frequently the only remaining option. At present, there is no rapid, early method to determine if malignant tumors are resistant to treatment. Now, in a breakthrough, researchers have used a chemical compound to highlight treatment-resistant cancers in imaging scans, helping doctors target and treat the cancer more effectively. This radiotracer – an injected compound used in PET scans – could alert doctors to whether a patient's aggressive cancer will resist chemotherapy before the treatment starts. This approach would prevent unnecessary treatments and allow for alternative therapies to be considered, improving the chances of successful treatment.
Researchers from King’s College London (London, UK repurposed a radiotracer that is already used as a diagnostic tool in clinical trials in the USA and South Korea to reveal treatment-resistant tumors on PET scans. The molecule specifically targets xCT, a protein associated with tumors that are resistant to therapy. The study, published in Nature Communications, demonstrated that therapy-resistant non-small cell lung cancer tumors appeared to "light up like a Christmas tree" on PET scans after the radiotracer was injected. In the study images, PET scans of animal models showed that therapy-resistant cancer cells illuminated more brightly than tumors that responded to treatment.
Additionally, the research revealed that xCT could also be targeted with an antibody-drug conjugate, a new class of drug that targets therapy-resistant cancer cells and selectively destroys them while minimizing toxicity to healthy cells. While this research is still in its early stages, the researchers are hopeful that it could provide new treatment options for patients with aggressive and hard-to-treat cancers, such as lung, pancreatic, and breast cancers. The researchers are preparing to test this approach in humans, with a phase I clinical trial scheduled to begin in January. This trial will recruit 35 patients and use a total-body PET scanner to track xCT expression before and after treatment.
“Our study is the cumulation of five years of work. Frequently, cancer patients find out too late that the treatment they’re on does not work,” said Tim Witney, a Professor of Molecular Imaging from King’s College London, and lead researcher of the study. “The radiotracer 18F-FSPG binds to the tumor-resistant cells and lights up like a Christmas tree in imaging – clearly showing the aggressive cancer. With this technique, we can give the right treatment to the right patient, making it more cost-efficient for the NHS and providing hope for patients with aggressive tumors.”
Latest Nuclear Medicine News
- Novel Radiolabeled Antibody Improves Diagnosis and Treatment of Solid Tumors
- Novel PET Imaging Approach Offers Never-Before-Seen View of Neuroinflammation
- Novel Radiotracer Identifies Biomarker for Triple-Negative Breast Cancer
- Innovative PET Imaging Technique to Help Diagnose Neurodegeneration
- New Molecular Imaging Test to Improve Lung Cancer Diagnosis
- Novel PET Technique Visualizes Spinal Cord Injuries to Predict Recovery
- Next-Gen Tau Radiotracers Outperform FDA-Approved Imaging Agents in Detecting Alzheimer’s
- Breakthrough Method Detects Inflammation in Body Using PET Imaging
- Advanced Imaging Reveals Hidden Metastases in High-Risk Prostate Cancer Patients
- Combining Advanced Imaging Technologies Offers Breakthrough in Glioblastoma Treatment
- New Molecular Imaging Agent Accurately Identifies Crucial Cancer Biomarker
- AI Stroke Brain Scan Readings Twice as Accurate as Current Method
- AI Analysis of PET/CT Images Predicts Side Effects of Immunotherapy in Lung Cancer
- New Imaging Agent to Drive Step-Change for Brain Cancer Imaging
- Portable PET Scanner to Detect Earliest Stages of Alzheimer’s Disease
- New Immuno-PET Imaging Technique Identifies Glioblastoma Patients Who Would Benefit from Immunotherapy
Channels
Radiography
view channel
World's Largest Class Single Crystal Diamond Radiation Detector Opens New Possibilities for Diagnostic Imaging
Diamonds possess ideal physical properties for radiation detection, such as exceptional thermal and chemical stability along with a quick response time. Made of carbon with an atomic number of six, diamonds... Read more
AI-Powered Imaging Technique Shows Promise in Evaluating Patients for PCI
Percutaneous coronary intervention (PCI), also known as coronary angioplasty, is a minimally invasive procedure where small metal tubes called stents are inserted into partially blocked coronary arteries... Read moreMRI
view channel
AI Tool Predicts Relapse of Pediatric Brain Cancer from Brain MRI Scans
Many pediatric gliomas are treatable with surgery alone, but relapses can be catastrophic. Predicting which patients are at risk for recurrence remains challenging, leading to frequent follow-ups with... Read more
AI Tool Tracks Effectiveness of Multiple Sclerosis Treatments Using Brain MRI Scans
Multiple sclerosis (MS) is a condition in which the immune system attacks the brain and spinal cord, leading to impairments in movement, sensation, and cognition. Magnetic Resonance Imaging (MRI) markers... Read more
Ultra-Powerful MRI Scans Enable Life-Changing Surgery in Treatment-Resistant Epileptic Patients
Approximately 360,000 individuals in the UK suffer from focal epilepsy, a condition in which seizures spread from one part of the brain. Around a third of these patients experience persistent seizures... Read moreUltrasound
view channel.jpeg)
AI-Powered Lung Ultrasound Outperforms Human Experts in Tuberculosis Diagnosis
Despite global declines in tuberculosis (TB) rates in previous years, the incidence of TB rose by 4.6% from 2020 to 2023. Early screening and rapid diagnosis are essential elements of the World Health... Read more
AI Identifies Heart Valve Disease from Common Imaging Test
Tricuspid regurgitation is a condition where the heart's tricuspid valve does not close completely during contraction, leading to backward blood flow, which can result in heart failure. A new artificial... Read moreGeneral/Advanced Imaging
view channel
AI-Powered Imaging System Improves Lung Cancer Diagnosis
Given the need to detect lung cancer at earlier stages, there is an increasing need for a definitive diagnostic pathway for patients with suspicious pulmonary nodules. However, obtaining tissue samples... Read more
AI Model Significantly Enhances Low-Dose CT Capabilities
Lung cancer remains one of the most challenging diseases, making early diagnosis vital for effective treatment. Fortunately, advancements in artificial intelligence (AI) are revolutionizing lung cancer... Read moreImaging IT
view channel
New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible
Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Global AI in Medical Diagnostics Market to Be Driven by Demand for Image Recognition in Radiology
The global artificial intelligence (AI) in medical diagnostics market is expanding with early disease detection being one of its key applications and image recognition becoming a compelling consumer proposition... Read moreIndustry News
view channel
GE HealthCare and NVIDIA Collaboration to Reimagine Diagnostic Imaging
GE HealthCare (Chicago, IL, USA) has entered into a collaboration with NVIDIA (Santa Clara, CA, USA), expanding the existing relationship between the two companies to focus on pioneering innovation in... Read more
Patient-Specific 3D-Printed Phantoms Transform CT Imaging
New research has highlighted how anatomically precise, patient-specific 3D-printed phantoms are proving to be scalable, cost-effective, and efficient tools in the development of new CT scan algorithms... Read more
Siemens and Sectra Collaborate on Enhancing Radiology Workflows
Siemens Healthineers (Forchheim, Germany) and Sectra (Linköping, Sweden) have entered into a collaboration aimed at enhancing radiologists' diagnostic capabilities and, in turn, improving patient care... Read more