Ultrasound Imaging-Guided Miniature Robots Enable Targeted Drug Delivery Directly to Tumor Site
By MedImaging International staff writers Posted on 12 Dec 2024 |

In the future, miniature robots may be tasked with delivering therapeutic drugs directly to targeted areas within the body. Instead of the traditional metal humanoid robots, they would be in the form of tiny, bubble-like spheres. Such robots would need to meet several stringent requirements, including surviving in bodily fluids like stomach acid, being controllable to direct them precisely to the target area, releasing their medicinal contents only upon reaching the target, and being absorbable without causing harm. Now, researchers have developed bioresorbable acoustic microrobots (BAM) that meet all of these criteria and have been shown to deliver therapeutics to reduce bladder tumor sizes in mice.
Micro- and nanorobots have been in development for two decades, but their practical application in living systems has been limited. The challenge has been the difficulty of moving objects with precision in complex biological fluids such as blood, urine, or saliva. Additionally, these robots must be biocompatible and bioresorbable, meaning they must not leave behind any toxic materials. The new microrobots, developed by researchers from the California Institute of Technology (Pasadena, CA, USA), are spherical microstructures made from a hydrogel called poly(ethylene glycol) diacrylate. Hydrogels are materials that start in a liquid or resin form but solidify once the polymers inside them cross-link, making them ideal for retaining fluids and being biocompatible. The manufacturing method for these microrobots allows the outer spheres to carry therapeutic drugs to target sites in the body.
To create these microrobots, the team utilized two-photon polymerization (TPP) lithography, a precise technique that uses infrared laser pulses to cross-link photosensitive polymers into a specific pattern. This allows the microrobots to be constructed with remarkable precision, layer by layer, similar to a 3D printing process but with much finer detail. The resulting microrobots are about 30 microns in diameter, roughly the size of a human hair, and contain magnetic nanoparticles along with the therapeutic drug within their spherical structure. These magnetic nanoparticles enable the microrobots to be directed by an external magnetic field, allowing them to reach their desired location. Upon arrival, the robots remain in place while the drug is passively released, as described in the journal Science Robotics.
The exterior of the microrobot is hydrophilic (water-attracting), ensuring that the robots do not clump together as they move through the body. However, the interior must be hydrophobic (water-repelling) to trap an air bubble, essential for movement. To achieve this, the team developed a two-step chemical modification. First, they attached long-chain carbon molecules to the hydrogel, making the entire structure hydrophobic. Then, they used oxygen plasma etching to remove the carbon chains from the interior, leaving it hydrophilic while maintaining the hydrophobic exterior. This modification enabled the robots to trap bubbles for longer durations, ranging from several days instead of the few minutes they would typically last. The bubbles are crucial for both movement and real-time imaging. The robots have two cylindrical openings—one at the top and another on the side. The research team found that the use of two openings gave the robots the ability to move not only in various viscous biofluids, but also at greater speeds than can be achieved with a single opening.
The team developed a way to track the microrobots as they move to their targets with the help of ultrasound imaging. Trapped within each microstructure is an egg-like bubble that serves as an excellent ultrasound imaging contrast agent, enabling real-time monitoring of the bots in vivo. When exposed to an ultrasound field, the bubbles vibrate, creating a flow of fluid that propels the robots. The team tested the microrobots as a drug-delivery tool in mice with bladder tumors. The results showed that administering therapeutics using the microrobots was more effective at shrinking tumors compared to traditional drug delivery methods. Over 21 days, four doses of therapeutic drugs delivered by the microrobots resulted in greater tumor reduction, demonstrating the potential of this technology for future therapeutic applications.
"We think this is a very promising platform for drug delivery and precision surgery," said Wei Gao, professor of medical engineering at Caltech. "Looking to the future, we could evaluate using this robot as a platform to deliver different types of therapeutic payloads or agents for different conditions. And in the long term, we hope to test this in humans."
Latest Ultrasound News
- Artificial Intelligence Detects Undiagnosed Liver Disease from Echocardiograms
- Ultrasound Imaging Non-Invasively Tracks Tumor Response to Radiation and Immunotherapy
- AI Improves Detection of Congenital Heart Defects on Routine Prenatal Ultrasounds
- AI Diagnoses Lung Diseases from Ultrasound Videos with 96.57% Accuracy
- New Contrast Agent for Ultrasound Imaging Ensures Affordable and Safer Medical Diagnostics
- Ultrasound-Directed Microbubbles Boost Immune Response Against Tumors
- POC Ultrasound Enhances Early Pregnancy Care and Cuts Emergency Visits
- AI-Based Models Outperform Human Experts at Identifying Ovarian Cancer in Ultrasound Images
- Automated Breast Ultrasound Provides Alternative to Mammography in Low-Resource Settings
- Transparent Ultrasound Transducer for Photoacoustic and Ultrasound Endoscopy to Improve Diagnostic Accuracy
- Wearable Ultrasound Patch Enables Continuous Blood Pressure Monitoring
- AI Image-Recognition Program Reads Echocardiograms Faster, Cuts Results Wait Time
- Ultrasound Device Non-Invasively Improves Blood Circulation in Lower Limbs
- Wearable Ultrasound Device Provides Long-Term, Wireless Muscle Monitoring
- Ultrasound Can Identify Sources of Brain-Related Issues and Disorders Before Treatment
- New Guideline on Handling Endobronchial Ultrasound Transbronchial Needle Samples
Channels
Radiography
view channel
AI-Powered Mammography Screening Boosts Cancer Detection in Single-Reader Settings
A new study has revealed that an artificial intelligence (AI)-powered solution significantly improves cancer detection in single-reader mammography settings without increasing recall rates, offering a... Read more
Photon Counting Detectors Promise Fast Color X-Ray Images
For many years, healthcare professionals have depended on traditional 2D X-rays to diagnose common bone fractures, though small fractures or soft tissue damage, such as cancers, can often be missed.... Read moreMRI
view channel
Biparametric MRI Combined with AI Enhances Detection of Clinically Significant Prostate Cancer
Artificial intelligence (AI) technologies are transforming the way medical images are analyzed, offering unprecedented capabilities in quantitatively extracting features that go beyond traditional visual... Read more
First-Of-Its-Kind AI-Driven Brain Imaging Platform to Better Guide Stroke Treatment Options
Each year, approximately 800,000 people in the U.S. experience strokes, with marginalized and minoritized groups being disproportionately affected. Strokes vary in terms of size and location within the... Read moreUltrasound
view channel
Artificial Intelligence Detects Undiagnosed Liver Disease from Echocardiograms
Echocardiography is a diagnostic procedure that uses ultrasound to visualize the heart and its associated structures. This imaging test is commonly used as an early screening method when doctors suspect... Read more
Ultrasound Imaging Non-Invasively Tracks Tumor Response to Radiation and Immunotherapy
While immunotherapy holds promise in the fight against triple-negative breast cancer, many patients fail to respond to current treatments. A major challenge has been predicting and monitoring how individual... Read moreNuclear Medicine
view channel
Novel Radiotracer Identifies Biomarker for Triple-Negative Breast Cancer
Triple-negative breast cancer (TNBC), which represents 15-20% of all breast cancer cases, is one of the most aggressive subtypes, with a five-year survival rate of about 40%. Due to its significant heterogeneity... Read more
Innovative PET Imaging Technique to Help Diagnose Neurodegeneration
Neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS) and Alzheimer’s disease, are often diagnosed only after physical symptoms appear, by which time treatment may no longer be effective.... Read moreGeneral/Advanced Imaging
view channel
AI Reduces CT Lung Cancer Screening Workload by Almost 80%
Lung cancer impacts over 48,000 individuals in the UK annually, and early detection is key to improving survival rates. The UK Lung Cancer Screening (UKLS) trial has already shown that low-dose CT (LDCT)... Read more
Cutting-Edge Technology Combines Light and Sound for Real-Time Stroke Monitoring
Stroke is the second leading cause of death globally, claiming millions of lives each year. Ischemic stroke, in particular, occurs when a blood vessel that supplies blood to the brain becomes blocked.... Read more
AI System Detects Subtle Changes in Series of Medical Images Over Time
Traditional approaches for analyzing longitudinal image datasets typically require significant customization and extensive pre-processing. For instance, in studies of the brain, researchers often begin... Read more
New CT Scan Technique to Improve Prognosis and Treatments for Head and Neck Cancers
Cancers of the mouth, nose, and throat are becoming increasingly common in the U.S., particularly among younger individuals. Approximately 60,000 new cases are diagnosed annually, with 20% of these cases... Read moreImaging IT
view channel
New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible
Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Global AI in Medical Diagnostics Market to Be Driven by Demand for Image Recognition in Radiology
The global artificial intelligence (AI) in medical diagnostics market is expanding with early disease detection being one of its key applications and image recognition becoming a compelling consumer proposition... Read moreIndustry News
view channel
Siemens and Sectra Collaborate on Enhancing Radiology Workflows
Siemens Healthineers (Forchheim, Germany) and Sectra (Linköping, Sweden) have entered into a collaboration aimed at enhancing radiologists' diagnostic capabilities and, in turn, improving patient care... Read more