AI Method Accurately Predicts Breast Cancer Risk by Analyzing Multiple Mammograms
By MedImaging International staff writers Posted on 09 Dec 2024 |

Currently, there is no way to predict who is at risk of developing breast cancer based on mammogram images alone. While some risk-reduction strategies are available, such as the use of tamoxifen, these treatments may cause unwanted side effects. Most high-risk women are offered more frequent screenings or the option to include additional imaging methods, like MRIs, to detect cancer early. Now, a new study published in JCO Clinical Cancer Informatics introduces a breakthrough approach to analyzing mammograms, significantly enhancing the accuracy of predicting a woman’s risk of developing breast cancer in the next five years. By incorporating up to three years of previous mammograms, this new method identified individuals at high risk of developing breast cancer 2.3 times more accurately than the standard method, which relies solely on questionnaires about clinical risk factors such as age, race, and family history.
This risk-prediction model builds upon previous research conducted by Washington University School of Medicine (St. Louis, MO, USA), which revealed that earlier mammograms contain valuable insights into the early stages of breast cancer that may go unnoticed by even well-trained professionals. These insights include subtle shifts in breast density, which measures the relative amounts of fibrous and fatty tissue in the breasts. In the latest study, the team developed an artificial intelligence-based algorithm that can detect minute differences in mammograms, helping to identify women at the highest risk of developing breast cancer over a specific time period. Apart from breast density, the algorithm also evaluates other patterns, such as changes in texture, calcification, and asymmetry in the images. The new method is capable of spotting small changes over time in repeated mammogram images that are not visible to the human eye but are rich in information crucial for identifying high-risk individuals.
The researchers trained their machine-learning algorithm using mammograms from more than 10,000 women who had breast cancer screenings between 2008 and 2012. These women were followed until 2020, with 478 diagnosed with breast cancer during that period. The team then applied their method to a separate dataset of over 18,000 women who had mammograms between 2013 and 2020, with 332 of these women being diagnosed with breast cancer during follow-up. According to the new prediction model, women identified as high-risk were 21 times more likely to be diagnosed with breast cancer in the next five years compared to those in the lowest-risk group. In the high-risk group, 53 out of every 1,000 women screened developed breast cancer, while in the low-risk group, only 2.6 women per 1,000 screened developed breast cancer. In comparison, the older, questionnaire-based method correctly identified only 23 women per 1,000 as high-risk, missing 30 breast cancer cases that the new method detected.
The mammograms were taken from both academic medical centers and community clinics, demonstrating that the accuracy of this method remains consistent across various healthcare settings. Importantly, the algorithm was designed with significant representation of Black women, a group often underrepresented in breast cancer risk models. The predictive accuracy was consistent across racial groups. Ongoing work includes testing the algorithm in women from diverse racial and ethnic backgrounds, including Asian, Southeast Asian, and Native American women, to ensure its effectiveness for all populations. The researchers are also working on securing patents and licensing for this new method, with plans to make it widely available wherever screening mammograms are provided.
“Today, we don’t have a way to know who is likely to develop breast cancer in the future based on their mammogram images,” said co-author Debbie L. Bennett, MD, an associate professor of radiology and chief of breast imaging for the Mallinckrodt Institute of Radiology at WashU Medicine. “What’s so exciting about this research is that it indicates that it is possible to glean this information from current and prior mammograms using this algorithm. The prediction is never going to be perfect, but this study suggests the new algorithm is much better than our current methods.”
Latest Radiography News
- AI-Powered Mammography Screening Boosts Cancer Detection in Single-Reader Settings
- Photon Counting Detectors Promise Fast Color X-Ray Images
- AI Can Flag Mammograms for Supplemental MRI
- 3D CT Imaging from Single X-Ray Projection Reduces Radiation Exposure
- Printable Organic X-Ray Sensors Could Transform Treatment for Cancer Patients
- Highly Sensitive, Foldable Detector to Make X-Rays Safer
- Novel Breast Cancer Screening Technology Could Offer Superior Alternative to Mammogram
- Artificial Intelligence Accurately Predicts Breast Cancer Years Before Diagnosis
- AI-Powered Chest X-Ray Detects Pulmonary Nodules Three Years Before Lung Cancer Symptoms
- AI Model Identifies Vertebral Compression Fractures in Chest Radiographs
- Advanced 3D Mammography Detects More Breast Cancers
- AI X-Ray Diagnostic Tool Offers Rapid Pediatric Fracture Detection
- AI-Powered Chest X-Ray Analysis Shows Promise in Clinical Practice
- AI-Based Algorithm Improves Accuracy of Breast Cancer Diagnoses
- Groundbreaking X-Ray Imaging Technique Could Improve Medical Diagnostics
- Innovative X-Ray Technique Captures Human Heart with Unprecedented Detail
Channels
MRI
view channel
Biparametric MRI Combined with AI Enhances Detection of Clinically Significant Prostate Cancer
Artificial intelligence (AI) technologies are transforming the way medical images are analyzed, offering unprecedented capabilities in quantitatively extracting features that go beyond traditional visual... Read more
First-Of-Its-Kind AI-Driven Brain Imaging Platform to Better Guide Stroke Treatment Options
Each year, approximately 800,000 people in the U.S. experience strokes, with marginalized and minoritized groups being disproportionately affected. Strokes vary in terms of size and location within the... Read moreUltrasound
view channel
Artificial Intelligence Detects Undiagnosed Liver Disease from Echocardiograms
Echocardiography is a diagnostic procedure that uses ultrasound to visualize the heart and its associated structures. This imaging test is commonly used as an early screening method when doctors suspect... Read more
Ultrasound Imaging Non-Invasively Tracks Tumor Response to Radiation and Immunotherapy
While immunotherapy holds promise in the fight against triple-negative breast cancer, many patients fail to respond to current treatments. A major challenge has been predicting and monitoring how individual... Read moreNuclear Medicine
view channel
Novel Radiotracer Identifies Biomarker for Triple-Negative Breast Cancer
Triple-negative breast cancer (TNBC), which represents 15-20% of all breast cancer cases, is one of the most aggressive subtypes, with a five-year survival rate of about 40%. Due to its significant heterogeneity... Read more
Innovative PET Imaging Technique to Help Diagnose Neurodegeneration
Neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS) and Alzheimer’s disease, are often diagnosed only after physical symptoms appear, by which time treatment may no longer be effective.... Read moreGeneral/Advanced Imaging
view channel
AI Reduces CT Lung Cancer Screening Workload by Almost 80%
Lung cancer impacts over 48,000 individuals in the UK annually, and early detection is key to improving survival rates. The UK Lung Cancer Screening (UKLS) trial has already shown that low-dose CT (LDCT)... Read more
Cutting-Edge Technology Combines Light and Sound for Real-Time Stroke Monitoring
Stroke is the second leading cause of death globally, claiming millions of lives each year. Ischemic stroke, in particular, occurs when a blood vessel that supplies blood to the brain becomes blocked.... Read more
AI System Detects Subtle Changes in Series of Medical Images Over Time
Traditional approaches for analyzing longitudinal image datasets typically require significant customization and extensive pre-processing. For instance, in studies of the brain, researchers often begin... Read more
New CT Scan Technique to Improve Prognosis and Treatments for Head and Neck Cancers
Cancers of the mouth, nose, and throat are becoming increasingly common in the U.S., particularly among younger individuals. Approximately 60,000 new cases are diagnosed annually, with 20% of these cases... Read moreImaging IT
view channel
New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible
Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Global AI in Medical Diagnostics Market to Be Driven by Demand for Image Recognition in Radiology
The global artificial intelligence (AI) in medical diagnostics market is expanding with early disease detection being one of its key applications and image recognition becoming a compelling consumer proposition... Read moreIndustry News
view channel
Siemens and Sectra Collaborate on Enhancing Radiology Workflows
Siemens Healthineers (Forchheim, Germany) and Sectra (Linköping, Sweden) have entered into a collaboration aimed at enhancing radiologists' diagnostic capabilities and, in turn, improving patient care... Read more