New Immuno-PET Imaging Technique Identifies Glioblastoma Patients Who Would Benefit from Immunotherapy
By MedImaging International staff writers Posted on 04 Nov 2024 |

Glioblastoma is a type of brain tumor associated with a very poor prognosis, with average survival rates of 12 to 18 months and only 5% of patients surviving beyond five years. Research has shown that certain patients, particularly those with aggressive tumors, may respond favorably to immunotherapy drugs; however, there is currently no method to assess this without a tumor biopsy. Elevated levels of the PD-L1 protein have been detected in rapidly progressing glioblastoma tumors. This protein functions as a brake on the immune system, and targeting PD-L1 to inhibit its activity could potentially reactivate the immune response against the cancer. Historically, a biopsy has been the sole method for evaluating PD-L1 levels in brain tumors. However, biopsies provide only a static snapshot of protein levels at the time of sampling, and there can be a significant delay in treatment decisions, during which protein levels may fluctuate. Due to the risks associated with infection and bleeding, biopsies are seldom performed for glioblastomas before surgery to remove the tumor, leaving many patients without access to potentially beneficial treatments. Consequently, the difficulties in assessing PD-L1 levels without a biopsy have led to the exclusion of patients with newly diagnosed primary brain tumors from early-phase clinical trials. A new imaging technique may now allow patients with aggressive brain tumors to access cutting-edge immunotherapy treatments.
Researchers at The Institute of Cancer Research (London, UK) have developed a novel immuno-PET imaging technique that could identify which glioblastoma patients are likely to benefit from immunotherapy and track their response over time. They created a radiotracer—a radioactive molecule linked to an antibody—that specifically binds to the PD-L1 protein, enabling measurement of its levels in glioblastoma patients. Findings published in the journal Neuro-Oncology demonstrated that the radiotracer effectively binds to PD-L1 on tumor and immune cells, as seen in PET scans. Eight newly diagnosed glioblastoma patients received the tracer intravenously, followed by PET scans at 48 and 72 hours post-injection. The PET scans revealed successful binding of the tracer to PD-L1 positive cells in the tumor and throughout the body. These findings were then compared with biopsies collected during surgical tumor removal.
Among the patients, five were randomly selected to receive pembrolizumab prior to surgery. Pembrolizumab is a monoclonal antibody that inhibits PD-L1 by targeting its interaction with a protein called PD-1. The researchers observed lower levels of the tracer in the tumors of these patients, suggesting that the drug effectively acts on the PD-L1 protein, thus removing the immune system's inhibitory effects and allowing it to combat the cancer. Additionally, these patients showed increased tracer levels in lymph tissues, indicating that the drug was activating immune cells throughout the body. Notably, three of these five patients experienced stabilization of their cancer without further growth. The researchers plan to investigate the relationship between the patients' responses to the drug and the levels of PD-L1 in their tumors prior to treatment. The clinical trial aims to enroll 36 glioblastoma patients to assess the effectiveness of pembrolizumab administered before surgery, as well as to evaluate whether PET imaging with the radiotracer can be used to monitor progress and adjust treatment as necessary. Furthermore, the team has developed an alternative radiotracer that may prove even more effective than the antibody used in this study. This smaller molecule is expected to pass through the blood-brain barrier more easily, allowing for PET scans to be performed just one hour after injection. The researchers are hopeful about testing this new molecule in similar studies in the future.
“This study could revolutionize glioblastoma treatment, as we’ve shown that it is possible to image an immunotherapy target with our radiotracer. Being able to take a scan of the patient’s body and see the levels of this target means that we can predict the patients’ response, see their immune system responding to the treatment, and alter treatment where necessary – providing a personalized treatment plan based on the unique characteristics of their tumor, all without the need for a pre-surgery biopsy,” said Dr. Gabriela Kramer-Marek, Associate Professor and Group Leader in Preclinical Molecular Imaging at The Institute of Cancer Research. “I look forward to seeing the results of our larger clinical trial to assess how effective this immunotherapy is in glioblastoma patients – and I hope that our radiotracer will tell us more about the biology behind why some tumors are more responsive than others.”
Related Links:
The Institute of Cancer Research
Latest Nuclear Medicine News
- Novel Radiotracer Identifies Biomarker for Triple-Negative Breast Cancer
- Innovative PET Imaging Technique to Help Diagnose Neurodegeneration
- New Molecular Imaging Test to Improve Lung Cancer Diagnosis
- Novel PET Technique Visualizes Spinal Cord Injuries to Predict Recovery
- Next-Gen Tau Radiotracers Outperform FDA-Approved Imaging Agents in Detecting Alzheimer’s
- Breakthrough Method Detects Inflammation in Body Using PET Imaging
- Advanced Imaging Reveals Hidden Metastases in High-Risk Prostate Cancer Patients
- Combining Advanced Imaging Technologies Offers Breakthrough in Glioblastoma Treatment
- New Molecular Imaging Agent Accurately Identifies Crucial Cancer Biomarker
- New Scans Light Up Aggressive Tumors for Better Treatment
- AI Stroke Brain Scan Readings Twice as Accurate as Current Method
- AI Analysis of PET/CT Images Predicts Side Effects of Immunotherapy in Lung Cancer
- New Imaging Agent to Drive Step-Change for Brain Cancer Imaging
- Portable PET Scanner to Detect Earliest Stages of Alzheimer’s Disease
- PET Software Enhances Diagnosis and Monitoring of Alzheimer's Disease
- New Photon-Counting CT Technique Diagnoses Osteoarthritis Before Symptoms Develop
Channels
Radiography
view channel
AI-Powered Mammography Screening Boosts Cancer Detection in Single-Reader Settings
A new study has revealed that an artificial intelligence (AI)-powered solution significantly improves cancer detection in single-reader mammography settings without increasing recall rates, offering a... Read more
Photon Counting Detectors Promise Fast Color X-Ray Images
For many years, healthcare professionals have depended on traditional 2D X-rays to diagnose common bone fractures, though small fractures or soft tissue damage, such as cancers, can often be missed.... Read moreMRI
view channel
Biparametric MRI Combined with AI Enhances Detection of Clinically Significant Prostate Cancer
Artificial intelligence (AI) technologies are transforming the way medical images are analyzed, offering unprecedented capabilities in quantitatively extracting features that go beyond traditional visual... Read more
First-Of-Its-Kind AI-Driven Brain Imaging Platform to Better Guide Stroke Treatment Options
Each year, approximately 800,000 people in the U.S. experience strokes, with marginalized and minoritized groups being disproportionately affected. Strokes vary in terms of size and location within the... Read moreUltrasound
view channel
Artificial Intelligence Detects Undiagnosed Liver Disease from Echocardiograms
Echocardiography is a diagnostic procedure that uses ultrasound to visualize the heart and its associated structures. This imaging test is commonly used as an early screening method when doctors suspect... Read more
Ultrasound Imaging Non-Invasively Tracks Tumor Response to Radiation and Immunotherapy
While immunotherapy holds promise in the fight against triple-negative breast cancer, many patients fail to respond to current treatments. A major challenge has been predicting and monitoring how individual... Read moreGeneral/Advanced Imaging
view channel
AI Reduces CT Lung Cancer Screening Workload by Almost 80%
Lung cancer impacts over 48,000 individuals in the UK annually, and early detection is key to improving survival rates. The UK Lung Cancer Screening (UKLS) trial has already shown that low-dose CT (LDCT)... Read more
Cutting-Edge Technology Combines Light and Sound for Real-Time Stroke Monitoring
Stroke is the second leading cause of death globally, claiming millions of lives each year. Ischemic stroke, in particular, occurs when a blood vessel that supplies blood to the brain becomes blocked.... Read more
AI System Detects Subtle Changes in Series of Medical Images Over Time
Traditional approaches for analyzing longitudinal image datasets typically require significant customization and extensive pre-processing. For instance, in studies of the brain, researchers often begin... Read more
New CT Scan Technique to Improve Prognosis and Treatments for Head and Neck Cancers
Cancers of the mouth, nose, and throat are becoming increasingly common in the U.S., particularly among younger individuals. Approximately 60,000 new cases are diagnosed annually, with 20% of these cases... Read moreImaging IT
view channel
New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible
Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Global AI in Medical Diagnostics Market to Be Driven by Demand for Image Recognition in Radiology
The global artificial intelligence (AI) in medical diagnostics market is expanding with early disease detection being one of its key applications and image recognition becoming a compelling consumer proposition... Read moreIndustry News
view channel
Siemens and Sectra Collaborate on Enhancing Radiology Workflows
Siemens Healthineers (Forchheim, Germany) and Sectra (Linköping, Sweden) have entered into a collaboration aimed at enhancing radiologists' diagnostic capabilities and, in turn, improving patient care... Read more