We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

MedImaging

Download Mobile App
Recent News Radiography MRI Ultrasound Nuclear Medicine General/Advanced Imaging Imaging IT Industry News

AI Automates Detection of Mitral Regurgitation on Echocardiograms for Minimally Invasive Procedure

By MedImaging International staff writers
Posted on 23 Aug 2024
Print article
Image: Researchers are using AI to pick up early signs of mitral valve regurgitation, the most common heart valve disorder (Photo courtesy of 123RF)
Image: Researchers are using AI to pick up early signs of mitral valve regurgitation, the most common heart valve disorder (Photo courtesy of 123RF)

Mitral valve regurgitation is the most common but often missed heart valve disorder. Out of the four valves in the heart for facilitating blood movement throughout the body, the mitral valve, situated on the heart's left side, fails to close properly in some individuals, leading to blood flowing backward, a condition known as mitral valve regurgitation. This issue hampers blood circulation and may evolve into more severe complications such as shortness of breath, arrhythmia, and heart failure. Accurately determining the severity of this condition is crucial to deciding whether patients might adopt a watch-and-wait strategy or require immediate intervention. Researchers have now developed an artificial intelligence (AI) program to detect the presence and severity of mitral valve regurgitation from echocardiograms that could help identify patients for a minimally invasive procedure or surgery.

To develop the new program, investigators at Smidt Heart Institute at Cedars-Sinai (Los Angeles, CA, USA) utilized over 58,000 transthoracic echocardiograms—a type of ultrasound imaging used to evaluate heart conditions, including mitral regurgitation. The effectiveness of this program was evaluated using echocardiograms from 1,800 patients at Cedars-Sinai and an additional 915 from Stanford Healthcare. The findings, published in Circulation, show that the AI model demonstrated high accuracy in identifying moderate to severe cases of mitral valve regurgitation. After analyzing videos from more than 50,000 echocardiogram studies, the deep learning model effectively identified the most relevant and important videos for evaluating the severity of mitral regurgitation.

“This could improve how we identify patients with mitral regurgitation, which is becoming more prevalent in our aging population, and to personalize treatment even more so than we already do,” said Raj Makkar, MD, associate director of the Smidt Heart Institute, where the team has also performed more than 1,500 robotic mitral valve repairs with a near 100% success rates.

Related Links:
Smidt Heart Institute

Ultrasound Table
Women’s Ultrasound EA Table
Portable X-ray Unit
AJEX140H
New
MRI Infusion Workstation
BeneFusion MRI Station
Wall Fixtures
MRI SERIES

Print article

Channels

MRI

view channel
Image: An AI tool has shown tremendous promise for predicting relapse of pediatric brain cancer (Photo courtesy of 123RF)

AI Tool Predicts Relapse of Pediatric Brain Cancer from Brain MRI Scans

Many pediatric gliomas are treatable with surgery alone, but relapses can be catastrophic. Predicting which patients are at risk for recurrence remains challenging, leading to frequent follow-ups with... Read more

Nuclear Medicine

view channel
Image: In vivo imaging of U-87 MG xenograft model with varying mass doses of 89Zr-labeled KLG-3 or isotype control (Photo courtesy of L Gajecki et al.; doi.org/10.2967/jnumed.124.268762)

Novel Radiolabeled Antibody Improves Diagnosis and Treatment of Solid Tumors

Interleukin-13 receptor α-2 (IL13Rα2) is a cell surface receptor commonly found in solid tumors such as glioblastoma, melanoma, and breast cancer. It is minimally expressed in normal tissues, making it... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more