Innovative X-Ray Technique Captures Human Heart with Unprecedented Detail
By MedImaging International staff writers Posted on 26 Jul 2024 |

Cardiovascular disease remains the leading cause of death globally. In 2019, ischemic heart disease, which weakens the heart due to reduced blood supply, accounted for approximately 8.9 million or 16% of global deaths, an increase of over two million since the year 2000. Traditional imaging techniques like ultrasound, computed tomography (CT), and magnetic resonance imaging (MRI) used in diagnosing cardiovascular diseases do not provide comprehensive structural details of what is occurring within the organs. Detailed organ analysis typically requires physically slicing the organs into thin sections for scanning, which restricts the overall viewable area. In recent developments, synchrotron radiation, a type of particle accelerator, has enabled advanced imaging techniques that surpass these restrictions. Although prior synchrotron studies have been conducted on whole fetal and small animal hearts, these were limited to small scales. Now, for the first time, researchers have used a synchrotron X-ray imaging technique to visualize two entire human adult hearts, both healthy and diseased, at the cellular level in 3D.
The innovative X-ray technique called Hierarchical Phase-Contrast Tomography (HiP-CT) adopted by scientists at the University College London (UCL, London, UK) and the European Synchrotron (ESRF, Grenoble, France) overcomes the limitations of existing imaging techniques by providing a comprehensive and detailed 3D view of the entire adult human heart. This technique offers a complete 3D visualization at a 20-micron resolution—20 times more detailed than typical clinical CT scans—and can further zoom into a 2-micron cellular level resolution, achieving histological detail without physically sectioning the sample. This method allows for the imaging of whole organs in detail, uncovering previously unseen structures and connections.
A significant feat of the study published in Radiology is the detailed imaging of the cardiac conduction system, which is responsible for generating and transmitting the electrical impulses that coordinate the heart’s pumping action. Virtual slicing of this system provided insights into aspects such as fatty infiltration and the vascular pathways linking cardiac nodes with surrounding structures, offering a depth of detail never before achieved with traditional imaging methods. This new level of detail could prove crucial in treating conditions like arrhythmias, as it helps in understanding the variations in tissue thickness and fat layers between the heart’s outer surface and its protective sac. Beyond arrhythmias, HiP-CT's capabilities extend to exploring other cardiovascular conditions. Current anatomical studies aim to further examine congenital heart defects, such as single ventricle diseases. The next steps for the research team include expanding the sample size and continuing to analyze the structural architecture of the heart in both healthy and diseased states, to foster new diagnostic and therapeutic approaches.
“With today’s technology, an accurate interpretation of the anatomy underlying conditions such as arrhythmia is very difficult. So, there is enormous potential to inspire new treatments using the imaging technique that we’ve demonstrated here,” said Professor Andrew Cook, an author of the study and a heart anatomist from the UCL Institute of Cardiovascular Science. “We believe that our findings will help researchers understand the onset of cardiac rhythm abnormalities and also the efficacy of ablation strategies to cure them. For example, we now have a way to determine differences in the thickness of tissue and fat layers located between the outer surface of the heart and the protective sac surrounding the heart, which could be relevant when treating arrhythmia.”
Related Links:
University College London
European Synchrotron
Latest Radiography News
- World's Largest Class Single Crystal Diamond Radiation Detector Opens New Possibilities for Diagnostic Imaging
- AI-Powered Imaging Technique Shows Promise in Evaluating Patients for PCI
- Higher Chest X-Ray Usage Catches Lung Cancer Earlier and Improves Survival
- AI-Powered Mammograms Predict Cardiovascular Risk
- Generative AI Model Significantly Reduces Chest X-Ray Reading Time
- AI-Powered Mammography Screening Boosts Cancer Detection in Single-Reader Settings
- Photon Counting Detectors Promise Fast Color X-Ray Images
- AI Can Flag Mammograms for Supplemental MRI
- 3D CT Imaging from Single X-Ray Projection Reduces Radiation Exposure
- AI Method Accurately Predicts Breast Cancer Risk by Analyzing Multiple Mammograms
- Printable Organic X-Ray Sensors Could Transform Treatment for Cancer Patients
- Highly Sensitive, Foldable Detector to Make X-Rays Safer
- Novel Breast Cancer Screening Technology Could Offer Superior Alternative to Mammogram
- Artificial Intelligence Accurately Predicts Breast Cancer Years Before Diagnosis
- AI-Powered Chest X-Ray Detects Pulmonary Nodules Three Years Before Lung Cancer Symptoms
- AI Model Identifies Vertebral Compression Fractures in Chest Radiographs
Channels
MRI
view channel
AI Tool Predicts Relapse of Pediatric Brain Cancer from Brain MRI Scans
Many pediatric gliomas are treatable with surgery alone, but relapses can be catastrophic. Predicting which patients are at risk for recurrence remains challenging, leading to frequent follow-ups with... Read more
AI Tool Tracks Effectiveness of Multiple Sclerosis Treatments Using Brain MRI Scans
Multiple sclerosis (MS) is a condition in which the immune system attacks the brain and spinal cord, leading to impairments in movement, sensation, and cognition. Magnetic Resonance Imaging (MRI) markers... Read more
Ultra-Powerful MRI Scans Enable Life-Changing Surgery in Treatment-Resistant Epileptic Patients
Approximately 360,000 individuals in the UK suffer from focal epilepsy, a condition in which seizures spread from one part of the brain. Around a third of these patients experience persistent seizures... Read moreUltrasound
view channel.jpeg)
AI-Powered Lung Ultrasound Outperforms Human Experts in Tuberculosis Diagnosis
Despite global declines in tuberculosis (TB) rates in previous years, the incidence of TB rose by 4.6% from 2020 to 2023. Early screening and rapid diagnosis are essential elements of the World Health... Read more
AI Identifies Heart Valve Disease from Common Imaging Test
Tricuspid regurgitation is a condition where the heart's tricuspid valve does not close completely during contraction, leading to backward blood flow, which can result in heart failure. A new artificial... Read moreNuclear Medicine
view channel
Novel Radiolabeled Antibody Improves Diagnosis and Treatment of Solid Tumors
Interleukin-13 receptor α-2 (IL13Rα2) is a cell surface receptor commonly found in solid tumors such as glioblastoma, melanoma, and breast cancer. It is minimally expressed in normal tissues, making it... Read more
Novel PET Imaging Approach Offers Never-Before-Seen View of Neuroinflammation
COX-2, an enzyme that plays a key role in brain inflammation, can be significantly upregulated by inflammatory stimuli and neuroexcitation. Researchers suggest that COX-2 density in the brain could serve... Read moreGeneral/Advanced Imaging
view channel
AI-Powered Imaging System Improves Lung Cancer Diagnosis
Given the need to detect lung cancer at earlier stages, there is an increasing need for a definitive diagnostic pathway for patients with suspicious pulmonary nodules. However, obtaining tissue samples... Read more
AI Model Significantly Enhances Low-Dose CT Capabilities
Lung cancer remains one of the most challenging diseases, making early diagnosis vital for effective treatment. Fortunately, advancements in artificial intelligence (AI) are revolutionizing lung cancer... Read moreImaging IT
view channel
New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible
Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Global AI in Medical Diagnostics Market to Be Driven by Demand for Image Recognition in Radiology
The global artificial intelligence (AI) in medical diagnostics market is expanding with early disease detection being one of its key applications and image recognition becoming a compelling consumer proposition... Read moreIndustry News
view channel
GE HealthCare and NVIDIA Collaboration to Reimagine Diagnostic Imaging
GE HealthCare (Chicago, IL, USA) has entered into a collaboration with NVIDIA (Santa Clara, CA, USA), expanding the existing relationship between the two companies to focus on pioneering innovation in... Read more
Patient-Specific 3D-Printed Phantoms Transform CT Imaging
New research has highlighted how anatomically precise, patient-specific 3D-printed phantoms are proving to be scalable, cost-effective, and efficient tools in the development of new CT scan algorithms... Read more
Siemens and Sectra Collaborate on Enhancing Radiology Workflows
Siemens Healthineers (Forchheim, Germany) and Sectra (Linköping, Sweden) have entered into a collaboration aimed at enhancing radiologists' diagnostic capabilities and, in turn, improving patient care... Read more