Ultrasound Beam Triggers ‘Nanodroplets' For Targeted Drug Delivery
By MedImaging International staff writers Posted on 21 Jun 2024 |

Traditional methods of drug delivery are often inefficient and imprecise, dispersing medication throughout the body, including in areas where it’s not needed and may even be harmful. Achieving targeted delivery could significantly reduce the necessary dosage and minimize side effects. Scientists have now refined an emerging technique that achieves targeted drug delivery, making it safe and efficient for the first time and setting the stage for potential human trials.
Scientists at the University of Utah (Salt Lake City, UT, USA) have developed a technique that employs ultrasound waves to release drugs from nanocarriers at specific body sites. These nanocarriers are tiny, ranging from 470 to 550 nanometers in diameter, and consist of a hollow polymer shell. The shell’s polymers are designed with two ends: a 'hydrophilic' end that is compatible with water and faces outward, and a 'hydrophobic' end that repels water and faces inward. Enclosed within this shell is a core made up of hydrophobic perfluorocarbons, which are primarily composed of fluorine and carbon, mixed with a hydrophobic drug. This design prevents the cores from coalescing into a single droplet and forms a barrier against the immune system.
To trigger drug release, the team used ultrasound waves at frequencies of 300 or 900 kilohertz, which are beyond human hearing. The ultrasound beam can be precisely directed to target areas within the body that are just a few millimeters in size. It is believed that the ultrasound causes the perfluorocarbons within the nanocarriers to expand, stretching the droplet’s shell and increasing its permeability, allowing the drug to diffuse to the targeted organs, tissues, or cells. The effectiveness of the drug delivery was tested using the anesthetic propofol with different perfluorocarbons: perfluoropentane (PFP), decafluoropentane (DFP), and perfluorooctylbromide (PFOB).
The testing involved delivering ultrasound to the nanodroplets in vitro in 60 pulses of 100 milliseconds each over a minute. The results indicated that PFOB cores offered an optimal balance between droplet stability and delivery efficiency. For safety assessment, the researchers administered six doses of PFOB-based nanodroplets to a long-tailed macaque at weekly intervals, monitoring a series of blood biomarkers to track liver, kidney, and immune function. The study's results, which were published on June 19 in the journal Frontiers in Molecular Biosciences, confirmed that the nanodroplets were well tolerated and did not produce detectable side effects.
“Here we show a method to deliver drugs to specific areas of the body where they are needed. We do so using ultrasound waves, which trigger drug release from circulating nanocarriers when focused on the target,” said Matthew G Wilson, a graduate research assistant at the University of Utah, and the study’s first author. “We developed a method to produce stable nanocarriers repeatably, and identified ultrasound parameters that can activate them.”
Related Links:
University of Utah
Latest Ultrasound News
- AI-Powered Lung Ultrasound Outperforms Human Experts in Tuberculosis Diagnosis
- AI Identifies Heart Valve Disease from Common Imaging Test
- Novel Imaging Method Enables Early Diagnosis and Treatment Monitoring of Type 2 Diabetes
- Ultrasound-Based Microscopy Technique to Help Diagnose Small Vessel Diseases
- Smart Ultrasound-Activated Immune Cells Destroy Cancer Cells for Extended Periods
- Tiny Magnetic Robot Takes 3D Scans from Deep Within Body
- High Resolution Ultrasound Speeds Up Prostate Cancer Diagnosis
- World's First Wireless, Handheld, Whole-Body Ultrasound with Single PZT Transducer Makes Imaging More Accessible
- Artificial Intelligence Detects Undiagnosed Liver Disease from Echocardiograms
- Ultrasound Imaging Non-Invasively Tracks Tumor Response to Radiation and Immunotherapy
- AI Improves Detection of Congenital Heart Defects on Routine Prenatal Ultrasounds
- AI Diagnoses Lung Diseases from Ultrasound Videos with 96.57% Accuracy
- New Contrast Agent for Ultrasound Imaging Ensures Affordable and Safer Medical Diagnostics
- Ultrasound-Directed Microbubbles Boost Immune Response Against Tumors
- POC Ultrasound Enhances Early Pregnancy Care and Cuts Emergency Visits
- AI-Based Models Outperform Human Experts at Identifying Ovarian Cancer in Ultrasound Images
Channels
Radiography
view channel
World's Largest Class Single Crystal Diamond Radiation Detector Opens New Possibilities for Diagnostic Imaging
Diamonds possess ideal physical properties for radiation detection, such as exceptional thermal and chemical stability along with a quick response time. Made of carbon with an atomic number of six, diamonds... Read more
AI-Powered Imaging Technique Shows Promise in Evaluating Patients for PCI
Percutaneous coronary intervention (PCI), also known as coronary angioplasty, is a minimally invasive procedure where small metal tubes called stents are inserted into partially blocked coronary arteries... Read moreMRI
view channel
AI Tool Predicts Relapse of Pediatric Brain Cancer from Brain MRI Scans
Many pediatric gliomas are treatable with surgery alone, but relapses can be catastrophic. Predicting which patients are at risk for recurrence remains challenging, leading to frequent follow-ups with... Read more
AI Tool Tracks Effectiveness of Multiple Sclerosis Treatments Using Brain MRI Scans
Multiple sclerosis (MS) is a condition in which the immune system attacks the brain and spinal cord, leading to impairments in movement, sensation, and cognition. Magnetic Resonance Imaging (MRI) markers... Read more
Ultra-Powerful MRI Scans Enable Life-Changing Surgery in Treatment-Resistant Epileptic Patients
Approximately 360,000 individuals in the UK suffer from focal epilepsy, a condition in which seizures spread from one part of the brain. Around a third of these patients experience persistent seizures... Read moreNuclear Medicine
view channel
Novel Radiolabeled Antibody Improves Diagnosis and Treatment of Solid Tumors
Interleukin-13 receptor α-2 (IL13Rα2) is a cell surface receptor commonly found in solid tumors such as glioblastoma, melanoma, and breast cancer. It is minimally expressed in normal tissues, making it... Read more
Novel PET Imaging Approach Offers Never-Before-Seen View of Neuroinflammation
COX-2, an enzyme that plays a key role in brain inflammation, can be significantly upregulated by inflammatory stimuli and neuroexcitation. Researchers suggest that COX-2 density in the brain could serve... Read moreGeneral/Advanced Imaging
view channel
AI-Powered Imaging System Improves Lung Cancer Diagnosis
Given the need to detect lung cancer at earlier stages, there is an increasing need for a definitive diagnostic pathway for patients with suspicious pulmonary nodules. However, obtaining tissue samples... Read more
AI Model Significantly Enhances Low-Dose CT Capabilities
Lung cancer remains one of the most challenging diseases, making early diagnosis vital for effective treatment. Fortunately, advancements in artificial intelligence (AI) are revolutionizing lung cancer... Read moreImaging IT
view channel
New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible
Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Global AI in Medical Diagnostics Market to Be Driven by Demand for Image Recognition in Radiology
The global artificial intelligence (AI) in medical diagnostics market is expanding with early disease detection being one of its key applications and image recognition becoming a compelling consumer proposition... Read moreIndustry News
view channel
GE HealthCare and NVIDIA Collaboration to Reimagine Diagnostic Imaging
GE HealthCare (Chicago, IL, USA) has entered into a collaboration with NVIDIA (Santa Clara, CA, USA), expanding the existing relationship between the two companies to focus on pioneering innovation in... Read more
Patient-Specific 3D-Printed Phantoms Transform CT Imaging
New research has highlighted how anatomically precise, patient-specific 3D-printed phantoms are proving to be scalable, cost-effective, and efficient tools in the development of new CT scan algorithms... Read more
Siemens and Sectra Collaborate on Enhancing Radiology Workflows
Siemens Healthineers (Forchheim, Germany) and Sectra (Linköping, Sweden) have entered into a collaboration aimed at enhancing radiologists' diagnostic capabilities and, in turn, improving patient care... Read more