AI Predicts Cardiac Risk and Mortality from Routine Chest CT Scans
By MedImaging International staff writers Posted on 15 May 2024 |

Heart disease remains the leading cause of death and is largely preventable, yet many individuals are unaware of their risk until it becomes severe. Early detection through screening can reveal heart issues, identifying individuals who may need further examination or potential intervention. While traditional screening methods often measure blood indicators like cholesterol and triglyceride levels, computed tomography (CT) scans can offer a wealth of real-time data about heart health. However, acquiring detailed, quantitative cardiac images usually requires specialized equipment and dyes, making cardiac CT scans costly and not widely used. On the other hand, routine chest CT scans are commonly performed for various reasons, such as checking for lung infections or cancer. Now, a new study has found that these routine CT scans can potentially be used as a screening tool for heart disease.
A collaborative team at Cedars-Sinai Medical Center (Los Angeles, CA, US) is leveraging artificial intelligence (AI) to analyze standard chest CT scans to predict mortality risks. Their research has pinpointed several cardiac indicators within these scans that correlate with a higher risk of death, laying the groundwork for more effective cardiac screenings. The AI system examines images from thousands of patients to automatically extract prognostic features from routine chest CTs—features originally not targeted by these scans. These indicators are then aggregated and analyzed to predict the likelihood of cardiac-related mortality.
Traditionally, cardiac risk is assessed by radiologists identifying abnormalities in imaging. The innovative AI approach has significantly enhanced risk classification beyond this conventional standard. Integrating this AI technology into existing clinical workflows has proved to be simple and has already been implemented at Cedars-Sinai for research purposes. This AI tool is now used to routinely assess CT scans for cardiac prognostic factors. Radiologists typically focused on cancer detections, might not look for cardiac issues such as arterial calcification or chamber enlargement. The AI can assist them by screening these images in the background, identifying patients who may need further cardiac evaluation and potentially early treatment.
“There is a lot of important information that is hiding in chest CT scans,” explained senior study author Piotr Slomka, Ph.D., a professor at Cedars-Sinai. “By using AI to unearth and analyze key prognostic signals in these scans, we could perform opportunistic cardiac screening and potentially prompt treatments or lifestyle changes, which could ultimately save lives.”
Related Links:
Cedars-Sinai Medical Center
Latest General/Advanced Imaging News
- AI Reduces CT Lung Cancer Screening Workload by Almost 80%
- Cutting-Edge Technology Combines Light and Sound for Real-Time Stroke Monitoring
- AI System Detects Subtle Changes in Series of Medical Images Over Time
- New CT Scan Technique to Improve Prognosis and Treatments for Head and Neck Cancers
- World’s First Mobile Whole-Body CT Scanner to Provide Diagnostics at POC
- Comprehensive CT Scans Could Identify Atherosclerosis Among Lung Cancer Patients
- AI Improves Detection of Colorectal Cancer on Routine Abdominopelvic CT Scans
- Super-Resolution Technology Enhances Clinical Bone Imaging to Predict Osteoporotic Fracture Risk
- AI-Powered Abdomen Map Enables Early Cancer Detection
- Deep Learning Model Detects Lung Tumors on CT
- AI Predicts Cardiovascular Risk from CT Scans
- Deep Learning Based Algorithms Improve Tumor Detection in PET/CT Scans
- New Technology Provides Coronary Artery Calcification Scoring on Ungated Chest CT Scans
- Deep Learning Model Accurately Diagnoses COPD Using Single Inhalation Lung CT Scan
- AI Model Reconstructs Sparse-View 3D CT Scan With Much Lower X-Ray Dose
- New Medical Scanner Identifies Brain Damage in Stroke Patients at Lower Magnetic Fields
Channels
Radiography
view channel
AI-Powered Mammography Screening Boosts Cancer Detection in Single-Reader Settings
A new study has revealed that an artificial intelligence (AI)-powered solution significantly improves cancer detection in single-reader mammography settings without increasing recall rates, offering a... Read more
Photon Counting Detectors Promise Fast Color X-Ray Images
For many years, healthcare professionals have depended on traditional 2D X-rays to diagnose common bone fractures, though small fractures or soft tissue damage, such as cancers, can often be missed.... Read moreMRI
view channel
Biparametric MRI Combined with AI Enhances Detection of Clinically Significant Prostate Cancer
Artificial intelligence (AI) technologies are transforming the way medical images are analyzed, offering unprecedented capabilities in quantitatively extracting features that go beyond traditional visual... Read more
First-Of-Its-Kind AI-Driven Brain Imaging Platform to Better Guide Stroke Treatment Options
Each year, approximately 800,000 people in the U.S. experience strokes, with marginalized and minoritized groups being disproportionately affected. Strokes vary in terms of size and location within the... Read moreUltrasound
view channel
Artificial Intelligence Detects Undiagnosed Liver Disease from Echocardiograms
Echocardiography is a diagnostic procedure that uses ultrasound to visualize the heart and its associated structures. This imaging test is commonly used as an early screening method when doctors suspect... Read more
Ultrasound Imaging Non-Invasively Tracks Tumor Response to Radiation and Immunotherapy
While immunotherapy holds promise in the fight against triple-negative breast cancer, many patients fail to respond to current treatments. A major challenge has been predicting and monitoring how individual... Read moreNuclear Medicine
view channel
Novel Radiotracer Identifies Biomarker for Triple-Negative Breast Cancer
Triple-negative breast cancer (TNBC), which represents 15-20% of all breast cancer cases, is one of the most aggressive subtypes, with a five-year survival rate of about 40%. Due to its significant heterogeneity... Read more
Innovative PET Imaging Technique to Help Diagnose Neurodegeneration
Neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS) and Alzheimer’s disease, are often diagnosed only after physical symptoms appear, by which time treatment may no longer be effective.... Read moreImaging IT
view channel
New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible
Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Global AI in Medical Diagnostics Market to Be Driven by Demand for Image Recognition in Radiology
The global artificial intelligence (AI) in medical diagnostics market is expanding with early disease detection being one of its key applications and image recognition becoming a compelling consumer proposition... Read moreIndustry News
view channel
Siemens and Sectra Collaborate on Enhancing Radiology Workflows
Siemens Healthineers (Forchheim, Germany) and Sectra (Linköping, Sweden) have entered into a collaboration aimed at enhancing radiologists' diagnostic capabilities and, in turn, improving patient care... Read more