Catheter-Based Device with New Cardiovascular Imaging Approach Offers Unprecedented View of Dangerous Plaques
By MedImaging International staff writers Posted on 06 Mar 2024 |

Atherosclerosis, a major cause of heart attacks and strokes, surpasses all types of cancer combined as the leading cause of death in Western societies, representing a significant public health issue. This condition arises when substances like fats and cholesterol build up in artery walls, causing them to thicken and stiffen. If a plaque in these blood vessels ruptures or fragments, it can lead to a heart attack or stroke. Now, researchers have invented a novel catheter-based device that combines two sophisticated optical techniques to image dangerous plaques in arteries supplying blood to the heart. By revealing new details about plaques, this device could be instrumental in enhancing treatments to prevent heart attacks and strokes.
Much of the current knowledge about atherosclerosis's formation and progression stems from histopathology studies on postmortem coronary specimens. Although the advent of intravascular ultrasound and OCT has enabled plaque study in living patients, more effective methods and tools are needed to investigate atherosclerosis. To meet this need, a team at the University of California, Davis (Davis, CA, USA) designed the new, flexible device that combines fluorescence lifetime imaging (FLIM) and polarization-sensitive optical coherence tomography (PSOCT). This device captures rich information on the composition, shape, and microstructure of atherosclerotic plaques.
This multi-year project undertaken by the UC Davis researchers focused on developing multispectral FLIM for intravascular imaging which can reveal information like extracellular matrix composition, inflammation presence, and artery calcification levels. Previously, the researchers had combined FLIM with intravascular ultrasound; in their latest endeavor, they combined it with PSOCT. PSOCT provides detailed morphological data and measurements of birefringence and depolarization. Utilizing FLIM and PSOCT together delivers an unparalleled insight into plaque morphology, microstructure, and biochemical composition.
Developing multimodal intravascular imaging systems suitable for coronary catheterization presents technological challenges. It requires extremely thin (less than 1 mm), flexible catheters capable of navigating vessels with sharp twists and turns. A high imaging speed of about 100 frames/second is crucial to minimize cardiac motion artifacts for proper arterial imaging. To integrate FLIM and PSOCT without impairing either technique's performance, the researchers used suitable optical components. A newly designed rotary collimator with high light transmission and significant return loss was vital for effective PSOCT performance. Their catheter system matches the dimensions and flexibility of current intravascular imaging devices in clinical use.
Initial tests with artificial tissue validated the basic functionality of the new system, followed by the successful measurement of a healthy coronary artery from a pig. Subsequent in vivo tests in swine hearts showed the hybrid catheter system's capability, paving the way for clinical validation. These tests confirmed the system's ability to simultaneously gather co-registered FLIM data across four spectral bands and PSOCT information on backscattered intensity, birefringence, and depolarization. The next steps involve using the intravascular imaging system to examine plaques in ex vivo human coronary arteries. By comparing the optical signals with plaque characteristics identified by expert pathologists, the researchers aim to better understand which features FLIM-PSOCT can identify and develop predictive models. They also plan further testing towards clinical validation of the system in patients.
“Better clinical management made possible by advanced intravascular imaging tools will benefit patients by providing more accurate information to help cardiologists tailor treatment or by supporting the development of new therapies,” said research team member leader Laura Marcu from University of California, Davis.
“With further testing and development, our device could be used for longitudinal studies where intravascular imaging is obtained from the same patients at different timepoints, providing a picture of plaque evolution or response to therapeutic interventions,” added Julien Bec, first author of the paper. “This will be very valuable to better understand disease evolution, evaluate the efficacy of new drugs and treatments and guide stenting procedures used to restore normal blood flow.”
Related Links:
University of California, Davis
Latest General/Advanced Imaging News
- AI-Powered Imaging System Improves Lung Cancer Diagnosis
- AI Model Significantly Enhances Low-Dose CT Capabilities
- Ultra-Low Dose CT Aids Pneumonia Diagnosis in Immunocompromised Patients
- AI Reduces CT Lung Cancer Screening Workload by Almost 80%
- Cutting-Edge Technology Combines Light and Sound for Real-Time Stroke Monitoring
- AI System Detects Subtle Changes in Series of Medical Images Over Time
- New CT Scan Technique to Improve Prognosis and Treatments for Head and Neck Cancers
- World’s First Mobile Whole-Body CT Scanner to Provide Diagnostics at POC
- Comprehensive CT Scans Could Identify Atherosclerosis Among Lung Cancer Patients
- AI Improves Detection of Colorectal Cancer on Routine Abdominopelvic CT Scans
- Super-Resolution Technology Enhances Clinical Bone Imaging to Predict Osteoporotic Fracture Risk
- AI-Powered Abdomen Map Enables Early Cancer Detection
- Deep Learning Model Detects Lung Tumors on CT
- AI Predicts Cardiovascular Risk from CT Scans
- Deep Learning Based Algorithms Improve Tumor Detection in PET/CT Scans
- New Technology Provides Coronary Artery Calcification Scoring on Ungated Chest CT Scans
Channels
Radiography
view channel
World's Largest Class Single Crystal Diamond Radiation Detector Opens New Possibilities for Diagnostic Imaging
Diamonds possess ideal physical properties for radiation detection, such as exceptional thermal and chemical stability along with a quick response time. Made of carbon with an atomic number of six, diamonds... Read more
AI-Powered Imaging Technique Shows Promise in Evaluating Patients for PCI
Percutaneous coronary intervention (PCI), also known as coronary angioplasty, is a minimally invasive procedure where small metal tubes called stents are inserted into partially blocked coronary arteries... Read moreMRI
view channel
AI Tool Predicts Relapse of Pediatric Brain Cancer from Brain MRI Scans
Many pediatric gliomas are treatable with surgery alone, but relapses can be catastrophic. Predicting which patients are at risk for recurrence remains challenging, leading to frequent follow-ups with... Read more
AI Tool Tracks Effectiveness of Multiple Sclerosis Treatments Using Brain MRI Scans
Multiple sclerosis (MS) is a condition in which the immune system attacks the brain and spinal cord, leading to impairments in movement, sensation, and cognition. Magnetic Resonance Imaging (MRI) markers... Read more
Ultra-Powerful MRI Scans Enable Life-Changing Surgery in Treatment-Resistant Epileptic Patients
Approximately 360,000 individuals in the UK suffer from focal epilepsy, a condition in which seizures spread from one part of the brain. Around a third of these patients experience persistent seizures... Read moreUltrasound
view channel.jpeg)
AI-Powered Lung Ultrasound Outperforms Human Experts in Tuberculosis Diagnosis
Despite global declines in tuberculosis (TB) rates in previous years, the incidence of TB rose by 4.6% from 2020 to 2023. Early screening and rapid diagnosis are essential elements of the World Health... Read more
AI Identifies Heart Valve Disease from Common Imaging Test
Tricuspid regurgitation is a condition where the heart's tricuspid valve does not close completely during contraction, leading to backward blood flow, which can result in heart failure. A new artificial... Read moreNuclear Medicine
view channel
Novel Radiolabeled Antibody Improves Diagnosis and Treatment of Solid Tumors
Interleukin-13 receptor α-2 (IL13Rα2) is a cell surface receptor commonly found in solid tumors such as glioblastoma, melanoma, and breast cancer. It is minimally expressed in normal tissues, making it... Read more
Novel PET Imaging Approach Offers Never-Before-Seen View of Neuroinflammation
COX-2, an enzyme that plays a key role in brain inflammation, can be significantly upregulated by inflammatory stimuli and neuroexcitation. Researchers suggest that COX-2 density in the brain could serve... Read moreImaging IT
view channel
New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible
Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Global AI in Medical Diagnostics Market to Be Driven by Demand for Image Recognition in Radiology
The global artificial intelligence (AI) in medical diagnostics market is expanding with early disease detection being one of its key applications and image recognition becoming a compelling consumer proposition... Read moreIndustry News
view channel
GE HealthCare and NVIDIA Collaboration to Reimagine Diagnostic Imaging
GE HealthCare (Chicago, IL, USA) has entered into a collaboration with NVIDIA (Santa Clara, CA, USA), expanding the existing relationship between the two companies to focus on pioneering innovation in... Read more
Patient-Specific 3D-Printed Phantoms Transform CT Imaging
New research has highlighted how anatomically precise, patient-specific 3D-printed phantoms are proving to be scalable, cost-effective, and efficient tools in the development of new CT scan algorithms... Read more
Siemens and Sectra Collaborate on Enhancing Radiology Workflows
Siemens Healthineers (Forchheim, Germany) and Sectra (Linköping, Sweden) have entered into a collaboration aimed at enhancing radiologists' diagnostic capabilities and, in turn, improving patient care... Read more