AI Model Draws Maps to Accurately Identify Tumors and Diseases in Medical Images
By MedImaging International staff writers Posted on 05 Mar 2024 |

The interpretation of medical images varies across different regions of the world, particularly in developing countries where doctor shortages and long patient queues are common. Artificial Intelligence (AI) has emerged as a valuable aid in these settings. Automated medical image screening using AI can act as a supportive tool for doctors, pre-scanning images and highlighting unusual findings, such as tumors or early disease indicators (biomarkers), for further medical review. This approach not only saves time but can also enhance the accuracy of diagnoses. However, traditional AI models lack the capability to explain their findings, merely indicating the presence or absence of tumors without further elaboration.
Now, researchers at the Beckman Institute for Advanced Science and Technology (Urbana, IL, USA) have developed an innovative AI model that not only detects anomalies but also explains each decision it makes. This model, unlike standard AI tools, provides interpretive feedback rather than just identifying tumors. Conventionally, AI models assisting doctors are trained with numerous medical images, some showing abnormalities and others normal. These models, upon encountering a new image, assign a probability score indicating the likelihood of a tumor being present.
This novel AI model goes a step further by offering a visual explanation for its decision-making process through what's known as an "equivalency map" (E-map). This E-map transforms the original medical image, such as an X-ray or mammogram, assigning values to different regions based on their medical significance in predicting anomalies. The model aggregates these values to derive a final diagnostic score. This transparent approach allows doctors to see which areas of the map contributed more significantly to the diagnosis and to investigate these regions more closely, enhancing understanding and answering patient inquiries about the diagnostic process.
The research team trained this model on over 20,000 images across three different disease diagnostic tasks. The model was taught to identify early signs of tumors in simulated mammograms, to detect Drusen buildup in retinal images indicative of macular degeneration, and to recognize cardiomegaly in chest X-rays. When compared to traditional AI systems without self-explanation capabilities, this new model demonstrated comparable accuracy: 77.8% in mammograms, 99.1% in retinal OCT images, and 83% in chest X-rays, matching the existing models' accuracy. The success of this model, which employs a deep neural network mimicking the complexity of human neurons, is attributed to its design inspired by simpler, more interpretable linear neural networks. The researchers aim to extend this model's application to various body parts, with the ability to potentially distinguish between different anomalies in future developments.
"The idea is to help catch cancer and disease in its earliest stages — like an X on a map — and understand how the decision was made. Our model will help streamline that process and make it easier on doctors and patients alike,” said Sourya Sengupta, the study’s lead author and a graduate research assistant at the Beckman Institute.
“I am excited about our tool’s direct benefit to society, not only in terms of improving disease diagnoses, but also improving trust and transparency between doctors and patients,” added principal investigator Mark Anastasio, a Beckman Institute researcher and the Donald Biggar Willet Professor and Head of the Illinois Department of Bioengineering.
Related Links:
Beckman Institute
Latest General/Advanced Imaging News
- AI-Powered Imaging System Improves Lung Cancer Diagnosis
- AI Model Significantly Enhances Low-Dose CT Capabilities
- Ultra-Low Dose CT Aids Pneumonia Diagnosis in Immunocompromised Patients
- AI Reduces CT Lung Cancer Screening Workload by Almost 80%
- Cutting-Edge Technology Combines Light and Sound for Real-Time Stroke Monitoring
- AI System Detects Subtle Changes in Series of Medical Images Over Time
- New CT Scan Technique to Improve Prognosis and Treatments for Head and Neck Cancers
- World’s First Mobile Whole-Body CT Scanner to Provide Diagnostics at POC
- Comprehensive CT Scans Could Identify Atherosclerosis Among Lung Cancer Patients
- AI Improves Detection of Colorectal Cancer on Routine Abdominopelvic CT Scans
- Super-Resolution Technology Enhances Clinical Bone Imaging to Predict Osteoporotic Fracture Risk
- AI-Powered Abdomen Map Enables Early Cancer Detection
- Deep Learning Model Detects Lung Tumors on CT
- AI Predicts Cardiovascular Risk from CT Scans
- Deep Learning Based Algorithms Improve Tumor Detection in PET/CT Scans
- New Technology Provides Coronary Artery Calcification Scoring on Ungated Chest CT Scans
Channels
Radiography
view channel
World's Largest Class Single Crystal Diamond Radiation Detector Opens New Possibilities for Diagnostic Imaging
Diamonds possess ideal physical properties for radiation detection, such as exceptional thermal and chemical stability along with a quick response time. Made of carbon with an atomic number of six, diamonds... Read more
AI-Powered Imaging Technique Shows Promise in Evaluating Patients for PCI
Percutaneous coronary intervention (PCI), also known as coronary angioplasty, is a minimally invasive procedure where small metal tubes called stents are inserted into partially blocked coronary arteries... Read moreMRI
view channel
AI Tool Predicts Relapse of Pediatric Brain Cancer from Brain MRI Scans
Many pediatric gliomas are treatable with surgery alone, but relapses can be catastrophic. Predicting which patients are at risk for recurrence remains challenging, leading to frequent follow-ups with... Read more
AI Tool Tracks Effectiveness of Multiple Sclerosis Treatments Using Brain MRI Scans
Multiple sclerosis (MS) is a condition in which the immune system attacks the brain and spinal cord, leading to impairments in movement, sensation, and cognition. Magnetic Resonance Imaging (MRI) markers... Read more
Ultra-Powerful MRI Scans Enable Life-Changing Surgery in Treatment-Resistant Epileptic Patients
Approximately 360,000 individuals in the UK suffer from focal epilepsy, a condition in which seizures spread from one part of the brain. Around a third of these patients experience persistent seizures... Read moreUltrasound
view channel.jpeg)
AI-Powered Lung Ultrasound Outperforms Human Experts in Tuberculosis Diagnosis
Despite global declines in tuberculosis (TB) rates in previous years, the incidence of TB rose by 4.6% from 2020 to 2023. Early screening and rapid diagnosis are essential elements of the World Health... Read more
AI Identifies Heart Valve Disease from Common Imaging Test
Tricuspid regurgitation is a condition where the heart's tricuspid valve does not close completely during contraction, leading to backward blood flow, which can result in heart failure. A new artificial... Read moreNuclear Medicine
view channel
Novel Radiolabeled Antibody Improves Diagnosis and Treatment of Solid Tumors
Interleukin-13 receptor α-2 (IL13Rα2) is a cell surface receptor commonly found in solid tumors such as glioblastoma, melanoma, and breast cancer. It is minimally expressed in normal tissues, making it... Read more
Novel PET Imaging Approach Offers Never-Before-Seen View of Neuroinflammation
COX-2, an enzyme that plays a key role in brain inflammation, can be significantly upregulated by inflammatory stimuli and neuroexcitation. Researchers suggest that COX-2 density in the brain could serve... Read moreImaging IT
view channel
New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible
Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Global AI in Medical Diagnostics Market to Be Driven by Demand for Image Recognition in Radiology
The global artificial intelligence (AI) in medical diagnostics market is expanding with early disease detection being one of its key applications and image recognition becoming a compelling consumer proposition... Read moreIndustry News
view channel
GE HealthCare and NVIDIA Collaboration to Reimagine Diagnostic Imaging
GE HealthCare (Chicago, IL, USA) has entered into a collaboration with NVIDIA (Santa Clara, CA, USA), expanding the existing relationship between the two companies to focus on pioneering innovation in... Read more
Patient-Specific 3D-Printed Phantoms Transform CT Imaging
New research has highlighted how anatomically precise, patient-specific 3D-printed phantoms are proving to be scalable, cost-effective, and efficient tools in the development of new CT scan algorithms... Read more
Siemens and Sectra Collaborate on Enhancing Radiology Workflows
Siemens Healthineers (Forchheim, Germany) and Sectra (Linköping, Sweden) have entered into a collaboration aimed at enhancing radiologists' diagnostic capabilities and, in turn, improving patient care... Read more