AI-Powered Virtual Biopsy Helps Assess Lung Cancer from Medical Scans
|
By MedImaging International staff writers Posted on 23 Feb 2024 |

Lung cancer, the leading cause of cancer-related deaths, presents a challenge largely due to the absence of symptoms in its early stages. This underscores the urgent need for new methods to detect and treat the disease before it metastasizes. Typically, patients exhibiting lung cancer symptoms undergo diagnostic procedures like chest X-rays and computed tomography (CT) scans, which can also reveal whether the cancer has spread. When feasible, a biopsy is taken for clinical scientists to examine under a microscope, identifying the type of lung cancer, which is crucial in determining the most effective treatment plan. Additionally, a more recent test, known as metabolomic profiling, requires a tissue biopsy and offers a deeper insight into the tumor cell's chemical and metabolic makeup, providing vital information on how the cancer may progress. However, this test is not commonly used in hospitals due to its labor and time-intensive nature.
Lately, artificial intelligence (AI), particularly generative AI that can create new content from learned data, is being increasingly employed in the field of medical imaging to detect diseases that might be overlooked by human doctors or are imperceptible to the naked eye. Now, researchers at Imperial College London (London, UK) have developed a system that integrates CT scans with the chemical profile of both tumors and normal lung tissue. This innovation not only classifies the type of lung cancer but also provides accurate predictions about patient outcomes. For the first time, the use of medical imaging combined with AI offers what could be considered a 'virtual biopsy' for cancer patients. This non-invasive technique is key in identifying lung cancer types and predicting cancer progression, especially when a physical tissue biopsy is unfeasible or inappropriate.
For the research, the team set out to determine if the chemical information of lung tumors, as indicated in their metabolomic profile, could be detected in CT scans. Building an AI model required training with data from patients who have undergone medical scans, received definitive diagnoses, and for whom additional clinical information is available. Utilizing data from 48 patients treated for lung cancer, each having undergone a CT scan and detailed metabolomic profiling of their tumor and adjacent healthy tissue, the team created an AI-driven deep learning tool named tissue-metabolomic-radiomic-CT (TMR-CT). They discovered a significant and strong link between the patients' metabolomic profiles and the 'deep features' in their CT scans, which manifest as variations in brightness or darkness in the images.
The researchers hypothesized that this method could eliminate the need for physical tissue samples, allowing for the inference of tumor metabolic characteristics directly from CT scans. To validate this, they applied the TMR-CT model to a separate group of 723 lung cancer patients who had undergone CT scans but lacked metabolomic data. The findings were remarkable: TMR-CT proficiently categorized lung cancer types and provided reliable predictions about patient outcomes, surpassing traditional CT-based methodologies and clinical evaluations. The team is hopeful about confirming the efficacy of TMR-CT in other patient groups, including those with brain, ovarian, and endometrial cancers, where obtaining biopsies is often challenging. Going forward, this technique could be integrated into commercial medical imaging scanners as an algorithm, thereby revolutionizing cancer diagnostics.
“This research shows the potential of using CT scans to gain a deeper, more nuanced understanding of tissue and tumor chemical composition, that has until now only been accessible through direct tissue sampling,” said Professor Eric Aboagye, from Imperial’s Department of Surgery and Cancer. “This method could prove particularly beneficial in countries like the UK, where lung cancer prevalence is high, and potentially transform diagnostic and treatment protocols.”
Related Links:
Imperial College London
Latest General/Advanced Imaging News
- 3D Scanning Approach Enables Ultra-Precise Brain Surgery
- AI Tool Improves Medical Imaging Process by 90%
- New Ultrasmall, Light-Sensitive Nanoparticles Could Serve as Contrast Agents
- AI Algorithm Accurately Predicts Pancreatic Cancer Metastasis Using Routine CT Images
- Cutting-Edge Angio-CT Solution Offers New Therapeutic Possibilities
- Extending CT Imaging Detects Hidden Blood Clots in Stroke Patients
- Groundbreaking AI Model Accurately Segments Liver Tumors from CT Scans
- New CT-Based Indicator Helps Predict Life-Threatening Postpartum Bleeding Cases
- CT Colonography Beats Stool DNA Testing for Colon Cancer Screening
- First-Of-Its-Kind Wearable Device Offers Revolutionary Alternative to CT Scans
- AI-Based CT Scan Analysis Predicts Early-Stage Kidney Damage Due to Cancer Treatments
- CT-Based Deep Learning-Driven Tool to Enhance Liver Cancer Diagnosis
- AI-Powered Imaging System Improves Lung Cancer Diagnosis
- AI Model Significantly Enhances Low-Dose CT Capabilities
- Ultra-Low Dose CT Aids Pneumonia Diagnosis in Immunocompromised Patients
- AI Reduces CT Lung Cancer Screening Workload by Almost 80%
Channels
Radiography
view channel
X-Ray Breakthrough Captures Three Image-Contrast Types in Single Shot
Detecting early-stage cancer or subtle changes deep inside tissues has long challenged conventional X-ray systems, which rely only on how structures absorb radiation. This limitation keeps many microstructural... Read more
AI Generates Future Knee X-Rays to Predict Osteoarthritis Progression Risk
Osteoarthritis, a degenerative joint disease affecting over 500 million people worldwide, is the leading cause of disability among older adults. Current diagnostic tools allow doctors to assess damage... Read moreMRI
view channel
Novel Imaging Approach to Improve Treatment for Spinal Cord Injuries
Vascular dysfunction in the spinal cord contributes to multiple neurological conditions, including traumatic injuries and degenerative cervical myelopathy, where reduced blood flow can lead to progressive... Read more
AI-Assisted Model Enhances MRI Heart Scans
A cardiac MRI can reveal critical information about the heart’s function and any abnormalities, but traditional scans take 30 to 90 minutes and often suffer from poor image quality due to patient movement.... Read more
AI Model Outperforms Doctors at Identifying Patients Most At-Risk of Cardiac Arrest
Hypertrophic cardiomyopathy is one of the most common inherited heart conditions and a leading cause of sudden cardiac death in young individuals and athletes. While many patients live normal lives, some... Read moreUltrasound
view channel
Wearable Ultrasound Imaging System to Enable Real-Time Disease Monitoring
Chronic conditions such as hypertension and heart failure require close monitoring, yet today’s ultrasound imaging is largely confined to hospitals and short, episodic scans. This reactive model limits... Read more
Ultrasound Technique Visualizes Deep Blood Vessels in 3D Without Contrast Agents
Producing clear 3D images of deep blood vessels has long been difficult without relying on contrast agents, CT scans, or MRI. Standard ultrasound typically provides only 2D cross-sections, limiting clinicians’... Read moreNuclear Medicine
view channel
PET Imaging of Inflammation Predicts Recovery and Guides Therapy After Heart Attack
Acute myocardial infarction can trigger lasting heart damage, yet clinicians still lack reliable tools to identify which patients will regain function and which may develop heart failure.... Read more
Radiotheranostic Approach Detects, Kills and Reprograms Aggressive Cancers
Aggressive cancers such as osteosarcoma and glioblastoma often resist standard therapies, thrive in hostile tumor environments, and recur despite surgery, radiation, or chemotherapy. These tumors also... Read more
New Imaging Solution Improves Survival for Patients with Recurring Prostate Cancer
Detecting recurrent prostate cancer remains one of the most difficult challenges in oncology, as standard imaging methods such as bone scans and CT scans often fail to accurately locate small or early-stage tumors.... Read moreImaging IT
view channel
New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible
Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Global AI in Medical Diagnostics Market to Be Driven by Demand for Image Recognition in Radiology
The global artificial intelligence (AI) in medical diagnostics market is expanding with early disease detection being one of its key applications and image recognition becoming a compelling consumer proposition... Read moreIndustry News
view channel
GE HealthCare and NVIDIA Collaboration to Reimagine Diagnostic Imaging
GE HealthCare (Chicago, IL, USA) has entered into a collaboration with NVIDIA (Santa Clara, CA, USA), expanding the existing relationship between the two companies to focus on pioneering innovation in... Read morePatient-Specific 3D-Printed Phantoms Transform CT Imaging
New research has highlighted how anatomically precise, patient-specific 3D-printed phantoms are proving to be scalable, cost-effective, and efficient tools in the development of new CT scan algorithms... Read more
Siemens and Sectra Collaborate on Enhancing Radiology Workflows
Siemens Healthineers (Forchheim, Germany) and Sectra (Linköping, Sweden) have entered into a collaboration aimed at enhancing radiologists' diagnostic capabilities and, in turn, improving patient care... Read more







