AI System Combines CT Imaging with Clinical and Genetic Data for Early Lung Cancer Detection
By MedImaging International staff writers Posted on 20 Feb 2024 |

Lung carcinoma prognosis has evolved significantly with the discovery of molecular targets and their corresponding treatments. Specifically, mutations in the Epidermal Growth Factor Receptor (EGFR) gene, found in lung carcinoma, serve as key targets for specialized therapies. However, in countries with limited resources like India, advanced testing methods such as next-generation sequencing remain inaccessible for widespread use. Challenges also include obtaining sufficient tissue from lung core biopsies and dealing with the inherent intratumoral heterogeneity that complicates the identification of suitable tumor tissues. Now, researchers have demonstrated that an AI-based system can automatically detect and analyze lung nodule features from CT images, predicting the likelihood of EGFR mutations. This innovation aids oncologists and patients in resource-limited settings by providing near-optimal care and guiding appropriate treatment decisions.
Previous studies leveraging AI with CT imaging have shown promise in categorizing and analyzing lung nodules without incurring additional costs. However, most of these methods have focused solely on nodule detection in CT images. Moreover, while AI has been used to extract comprehensive lung information for predicting EGFR genotype and evaluating responses to targeted lung cancer therapy, such efforts have predominantly been centered on White and Chinese populations. With a primary focus on the Indian population, researchers led by the Rajiv Gandhi Cancer Institute and Research Centre (New Delhi, India) set out to develop an AI-based strategy that could not only detect but also characterize lung nodules, indicating the EGFR mutational status in lung carcinoma patients. This would help triage patients requiring extensive molecular profiling of the EGFR-driver gene.
The team created a fully automated AI-based Predictive System (AIPS) using machine learning (ML) and deep learning (DL) algorithms. This system can detect lung nodule features from CT images and assess the probability of an EGFR mutation, thus eliminating the need for time-consuming image annotation by radiologists and complex feature engineering. In addition to incorporating EGFR gene sequencing and CT imaging data from 2277 lung carcinoma patients across three cohorts in India and a White population cohort from TCIA, the researchers used the LIDC-IDRI cohort to train the AIPS-Nodule (AIPS-N) model. This model automatically detects and characterizes lung nodules. The AIPS-N model's combination with clinical factors in the AIPS-Mutation (AIPS-M) model was evaluated for its effectiveness in predicting the EGFR genotype, achieving area under the curve (AUC) values ranging from 0.587 to 0.910. The AIPS-N successfully detected nodules with an average AP50 of 70.19% and predicted scores for five lung nodule properties. This research suggests that CT imaging combined with an automated lung-nodule analysis AI system can non-invasively and cost-effectively predict EGFR genotype, identifying patients with EGFR mutations.
Related Links:
Rajiv Gandhi Cancer Institute and Research Centre
Latest General/Advanced Imaging News
- AI Reduces CT Lung Cancer Screening Workload by Almost 80%
- Cutting-Edge Technology Combines Light and Sound for Real-Time Stroke Monitoring
- AI System Detects Subtle Changes in Series of Medical Images Over Time
- New CT Scan Technique to Improve Prognosis and Treatments for Head and Neck Cancers
- World’s First Mobile Whole-Body CT Scanner to Provide Diagnostics at POC
- Comprehensive CT Scans Could Identify Atherosclerosis Among Lung Cancer Patients
- AI Improves Detection of Colorectal Cancer on Routine Abdominopelvic CT Scans
- Super-Resolution Technology Enhances Clinical Bone Imaging to Predict Osteoporotic Fracture Risk
- AI-Powered Abdomen Map Enables Early Cancer Detection
- Deep Learning Model Detects Lung Tumors on CT
- AI Predicts Cardiovascular Risk from CT Scans
- Deep Learning Based Algorithms Improve Tumor Detection in PET/CT Scans
- New Technology Provides Coronary Artery Calcification Scoring on Ungated Chest CT Scans
- Deep Learning Model Accurately Diagnoses COPD Using Single Inhalation Lung CT Scan
- AI Model Reconstructs Sparse-View 3D CT Scan With Much Lower X-Ray Dose
- New Medical Scanner Identifies Brain Damage in Stroke Patients at Lower Magnetic Fields
Channels
Radiography
view channel
AI-Powered Mammography Screening Boosts Cancer Detection in Single-Reader Settings
A new study has revealed that an artificial intelligence (AI)-powered solution significantly improves cancer detection in single-reader mammography settings without increasing recall rates, offering a... Read more
Photon Counting Detectors Promise Fast Color X-Ray Images
For many years, healthcare professionals have depended on traditional 2D X-rays to diagnose common bone fractures, though small fractures or soft tissue damage, such as cancers, can often be missed.... Read moreMRI
view channel
Biparametric MRI Combined with AI Enhances Detection of Clinically Significant Prostate Cancer
Artificial intelligence (AI) technologies are transforming the way medical images are analyzed, offering unprecedented capabilities in quantitatively extracting features that go beyond traditional visual... Read more
First-Of-Its-Kind AI-Driven Brain Imaging Platform to Better Guide Stroke Treatment Options
Each year, approximately 800,000 people in the U.S. experience strokes, with marginalized and minoritized groups being disproportionately affected. Strokes vary in terms of size and location within the... Read moreUltrasound
view channel
Artificial Intelligence Detects Undiagnosed Liver Disease from Echocardiograms
Echocardiography is a diagnostic procedure that uses ultrasound to visualize the heart and its associated structures. This imaging test is commonly used as an early screening method when doctors suspect... Read more
Ultrasound Imaging Non-Invasively Tracks Tumor Response to Radiation and Immunotherapy
While immunotherapy holds promise in the fight against triple-negative breast cancer, many patients fail to respond to current treatments. A major challenge has been predicting and monitoring how individual... Read moreNuclear Medicine
view channel
Novel Radiotracer Identifies Biomarker for Triple-Negative Breast Cancer
Triple-negative breast cancer (TNBC), which represents 15-20% of all breast cancer cases, is one of the most aggressive subtypes, with a five-year survival rate of about 40%. Due to its significant heterogeneity... Read more
Innovative PET Imaging Technique to Help Diagnose Neurodegeneration
Neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS) and Alzheimer’s disease, are often diagnosed only after physical symptoms appear, by which time treatment may no longer be effective.... Read moreImaging IT
view channel
New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible
Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Global AI in Medical Diagnostics Market to Be Driven by Demand for Image Recognition in Radiology
The global artificial intelligence (AI) in medical diagnostics market is expanding with early disease detection being one of its key applications and image recognition becoming a compelling consumer proposition... Read moreIndustry News
view channel
Siemens and Sectra Collaborate on Enhancing Radiology Workflows
Siemens Healthineers (Forchheim, Germany) and Sectra (Linköping, Sweden) have entered into a collaboration aimed at enhancing radiologists' diagnostic capabilities and, in turn, improving patient care... Read more