We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

MedImaging

Download Mobile App
Recent News Radiography MRI Ultrasound Nuclear Medicine General/Advanced Imaging Imaging IT Industry News

MRI-Guided Microscopic Robots Eliminate Liver Tumors

By MedImaging International staff writers
Posted on 19 Feb 2024
Print article
Image: Microrobots piloted by a magnetic field can treat liver cancer (Photo courtesy of 123RF)
Image: Microrobots piloted by a magnetic field can treat liver cancer (Photo courtesy of 123RF)

Hepatocellular carcinoma, the most common type of liver cancer, is a global health challenge, causing approximately 700,000 deaths annually. The current primary treatment modality is transarterial chemoembolization. This technique delivers chemotherapy directly into the artery supplying the liver tumor and blocks the tumor's blood supply using microcatheters, guided by X-ray. However, this method is invasive and demands highly skilled medical professionals. Now, a novel approach for treating liver tumors that uses magnet-guided microrobots in an MRI device could revolutionize interventional radiology approaches used to treat liver cancers.

The concept of injecting microscopic robots into the bloodstream for therapeutic purposes has been around for some time. Miniature robots, composed of biocompatible, magnetizable iron oxide nanoparticles and directed by an external magnetic field, can theoretically offer highly precise medical treatments. A key challenge has been that the gravitational force on these microrobots is greater than the magnetic force, affecting their navigation, especially when the target tumor lies above the injection site. While MRI machines produce a strong magnetic field, the magnetic gradients for navigation and image generation are relatively weak. Researchers at the University of Montreal Hospital Research Centre (CRCHUM, Quebec, Canada) have developed an innovative algorithm. This algorithm calculates the optimal positioning of the patient’s body within a clinical MRI to utilize gravity in conjunction with magnetic navigation forces, facilitating the movement of microrobots to arterial branches feeding the tumor and thereby conserving healthy cells.

This magnetic resonance navigation method can be implemented with an implantable catheter similar to those used in chemotherapy. Another advantage is that tumors are more clearly visible in MRI than in X-ray imaging. The researchers have created an MRI-compatible microrobot injector, assembling 'particle trains' - aggregates of magnetizable microrobots with enhanced magnetic force, making them easier to steer and detect in MRI images. This enables precise control of both the direction of the microrobot 'train' and the adequacy of the treatment dosage. As each microrobot is intended to deliver a fraction of the treatment, quantifying them is crucial for radiologists. Although this scientific advancement marks significant progress, its clinical application remains some distance away. Further, scientists must develop models to simulate blood flow, patient positioning, and magnetic field orientation. This modeling, predicting the fluid flow through vessels, will enhance the precision of microrobot transport to the target tumor, refining the accuracy of this innovative approach.

“First of all, using artificial intelligence, we need to optimize real-time navigation of the microrobots by detecting their location in the liver and also the occurrence of blockages in the hepatic artery branches feeding the tumor,” said Dr. Gilles Soulez, a researcher at the CHUM Research Centre.

Related Links:
CRCHUM

New
Gold Member
X-Ray QA Meter
T3 AD Pro
New
Ultrasound Imaging System
P12 Elite
Portable X-ray Unit
AJEX130HN
Ultrasound Color LCD
U156W

Print article
Radcal

Channels

Radiography

view channel
Image: The CT scanner prototype eliminates the need for physical compression of the breast (Photo courtesy of Quion Lowe and Lisa Dahm/U of A Cancer Center)

Novel Breast Cancer Screening Technology Could Offer Superior Alternative to Mammogram

Breast cancer represents 15.5% of new cancer cases and 7% of cancer-related deaths in the United States. Approximately 13.1% of women will be diagnosed with breast cancer during their lifetime.... Read more

Ultrasound

view channel
Image: Scientists have highlighted ultrasound’s potential to treat complex health conditions affecting the brain (Photo courtesy of University of Plymouth)

Ultrasound Can Identify Sources of Brain-Related Issues and Disorders Before Treatment

For many years, healthcare professionals worldwide have relied on ultrasound to monitor the growth of unborn infants and evaluate the health of internal organs. However, ultrasound technology, once primarily... Read more

Nuclear Medicine

view channel
mage: syngo.PET Cortical Analysis software enables the measurement of beta-amyloid and tau protein deposits in the brain (Photo courtesy of Siemens Healthineers)

PET Software Enhances Diagnosis and Monitoring of Alzheimer's Disease

Alzheimer’s disease is marked by the buildup of beta-amyloid plaques and tau protein tangles in the brain. These deposits of beta-amyloid and tau appear in various brain regions at differing rates as the brain ages.... Read more

General/Advanced Imaging

view channel
Image: Heavy smokers can ben Image (2):	efit from lung cancer screening using low-dose CT (Photo courtesy of 123RF)

Low-Dose CT Screening for Lung Cancer Can Benefit Heavy Smokers

Lung cancer is often diagnosed at a late stage, with only about one-fifth to one-sixth of patients surviving five years after diagnosis. A new report now suggests that low-dose computed tomography (CT)... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more

Industry News

view channel
Image: The advocacy partnership aims to help accelerate access to life-saving treatments (Photo courtesy of Philips)

Philips and Medtronic Partner on Stroke Care

A stroke is typically an acute incident primarily caused by a blockage in a brain blood vessel, which disrupts the adequate blood supply to brain tissue and results in the permanent loss of brain cells.... Read more