Ultrafast Ultrasound Imaging Technique Captures 1000 Images per Second
By MedImaging International staff writers Posted on 18 Jan 2024 |

The kidney's critical role in filtering waste and excess substances from the bloodstream can be severely impacted by conditions like hypertension and diabetes, potentially leading to kidney failure. This irreversible condition requires lifelong management through artificial hemodialysis or kidney transplantation. The direct connection between blood perfusion in the kidneys and their filtration function makes microvascular imaging a crucial tool for both the prevention and treatment of kidney failure.
Contemporary imaging techniques such as computed tomography (CT) and magnetic resonance imaging (MRI) face challenges in accurately capturing fine vascular structures. This is due to their inherent limitations in resolution and sensitivity. Additionally, in patients with kidney disease, the use of contrast agents in these methods is limited due to the risk of potentially fatal side effects. On the other hand, ultrasound imaging, known for its safety even in fetal monitoring, uses the Doppler effect to measure blood flow velocity and direction in real time without requiring contrast agents. However, traditional ultrasound imaging speeds are not sufficient to capture the fine blood vessels with the necessary sensitivity.
A research team at Pohang University of Science and Technology (POSTECH, Pohang, South Korea) has realized significant advancements in microvascular sensitivity. They have achieved this by employing ultrafast ultrasound acquisition techniques that capture images at 1,000 frames per second, over 100 times faster than conventional ultrasound methods. This breakthrough allowed them to image the three-dimensional microvasculature of the kidneys without the need for any contrast agents. In a pioneering feat, they achieved imaging of the entire three-dimensional vascular network of the renal artery, vein, and the minute 167μm (micrometer) thick interlobular arteries and veins in the renal cortex.
Additionally, the team conducted a continuous observation of renal vascular changes in an animal model with induced renal failure. Through this, they performed a multivariate analysis using various hemodynamic and vascular morphological indicators. Their findings revealed a significant decrease in renal blood flow during acute renal failure. In cases of diabetic nephropathy, they observed chronic vascular degeneration in the kidneys, characterized by vascular distortion. This innovative imaging technique holds promise in revolutionizing the monitoring and treatment of kidney diseases.
"The system allows us to understand the pathophysiology of diseases leading to kidney failure, enabling the observation of vascular changes before and after kidney transplantation," said Professor Chulhong Kim. "It has significant potential to be used to study blood circulation and functional impairment across various organs including the digestive system, circulatory system, and cerebral nervous system."
Related Links:
POSTECH
Latest Ultrasound News
- AI-Powered Lung Ultrasound Outperforms Human Experts in Tuberculosis Diagnosis
- AI Identifies Heart Valve Disease from Common Imaging Test
- Novel Imaging Method Enables Early Diagnosis and Treatment Monitoring of Type 2 Diabetes
- Ultrasound-Based Microscopy Technique to Help Diagnose Small Vessel Diseases
- Smart Ultrasound-Activated Immune Cells Destroy Cancer Cells for Extended Periods
- Tiny Magnetic Robot Takes 3D Scans from Deep Within Body
- High Resolution Ultrasound Speeds Up Prostate Cancer Diagnosis
- World's First Wireless, Handheld, Whole-Body Ultrasound with Single PZT Transducer Makes Imaging More Accessible
- Artificial Intelligence Detects Undiagnosed Liver Disease from Echocardiograms
- Ultrasound Imaging Non-Invasively Tracks Tumor Response to Radiation and Immunotherapy
- AI Improves Detection of Congenital Heart Defects on Routine Prenatal Ultrasounds
- AI Diagnoses Lung Diseases from Ultrasound Videos with 96.57% Accuracy
- New Contrast Agent for Ultrasound Imaging Ensures Affordable and Safer Medical Diagnostics
- Ultrasound-Directed Microbubbles Boost Immune Response Against Tumors
- POC Ultrasound Enhances Early Pregnancy Care and Cuts Emergency Visits
- AI-Based Models Outperform Human Experts at Identifying Ovarian Cancer in Ultrasound Images
Channels
Radiography
view channel
World's Largest Class Single Crystal Diamond Radiation Detector Opens New Possibilities for Diagnostic Imaging
Diamonds possess ideal physical properties for radiation detection, such as exceptional thermal and chemical stability along with a quick response time. Made of carbon with an atomic number of six, diamonds... Read more
AI-Powered Imaging Technique Shows Promise in Evaluating Patients for PCI
Percutaneous coronary intervention (PCI), also known as coronary angioplasty, is a minimally invasive procedure where small metal tubes called stents are inserted into partially blocked coronary arteries... Read moreMRI
view channel
AI Tool Predicts Relapse of Pediatric Brain Cancer from Brain MRI Scans
Many pediatric gliomas are treatable with surgery alone, but relapses can be catastrophic. Predicting which patients are at risk for recurrence remains challenging, leading to frequent follow-ups with... Read more
AI Tool Tracks Effectiveness of Multiple Sclerosis Treatments Using Brain MRI Scans
Multiple sclerosis (MS) is a condition in which the immune system attacks the brain and spinal cord, leading to impairments in movement, sensation, and cognition. Magnetic Resonance Imaging (MRI) markers... Read more
Ultra-Powerful MRI Scans Enable Life-Changing Surgery in Treatment-Resistant Epileptic Patients
Approximately 360,000 individuals in the UK suffer from focal epilepsy, a condition in which seizures spread from one part of the brain. Around a third of these patients experience persistent seizures... Read moreNuclear Medicine
view channel
Novel Radiolabeled Antibody Improves Diagnosis and Treatment of Solid Tumors
Interleukin-13 receptor α-2 (IL13Rα2) is a cell surface receptor commonly found in solid tumors such as glioblastoma, melanoma, and breast cancer. It is minimally expressed in normal tissues, making it... Read more
Novel PET Imaging Approach Offers Never-Before-Seen View of Neuroinflammation
COX-2, an enzyme that plays a key role in brain inflammation, can be significantly upregulated by inflammatory stimuli and neuroexcitation. Researchers suggest that COX-2 density in the brain could serve... Read moreGeneral/Advanced Imaging
view channel
AI-Powered Imaging System Improves Lung Cancer Diagnosis
Given the need to detect lung cancer at earlier stages, there is an increasing need for a definitive diagnostic pathway for patients with suspicious pulmonary nodules. However, obtaining tissue samples... Read more
AI Model Significantly Enhances Low-Dose CT Capabilities
Lung cancer remains one of the most challenging diseases, making early diagnosis vital for effective treatment. Fortunately, advancements in artificial intelligence (AI) are revolutionizing lung cancer... Read moreImaging IT
view channel
New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible
Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Global AI in Medical Diagnostics Market to Be Driven by Demand for Image Recognition in Radiology
The global artificial intelligence (AI) in medical diagnostics market is expanding with early disease detection being one of its key applications and image recognition becoming a compelling consumer proposition... Read moreIndustry News
view channel
GE HealthCare and NVIDIA Collaboration to Reimagine Diagnostic Imaging
GE HealthCare (Chicago, IL, USA) has entered into a collaboration with NVIDIA (Santa Clara, CA, USA), expanding the existing relationship between the two companies to focus on pioneering innovation in... Read more
Patient-Specific 3D-Printed Phantoms Transform CT Imaging
New research has highlighted how anatomically precise, patient-specific 3D-printed phantoms are proving to be scalable, cost-effective, and efficient tools in the development of new CT scan algorithms... Read more
Siemens and Sectra Collaborate on Enhancing Radiology Workflows
Siemens Healthineers (Forchheim, Germany) and Sectra (Linköping, Sweden) have entered into a collaboration aimed at enhancing radiologists' diagnostic capabilities and, in turn, improving patient care... Read more