AI Model Combines Blood Test and CT Scan Analysis to Predict Therapy Responses in Ovarian Cancer Patients
By MedImaging International staff writers Posted on 23 Nov 2023 |

Ovarian cancer annually impacts thousands of women, with many diagnoses occurring at advanced stages due to subtle early symptoms. High-grade serous ovarian carcinoma, which accounts for 70-80% of ovarian cancer cases, is particularly aggressive and often resistant to chemotherapy. Current methods for predicting response to therapy in these tumors are only about 50% accurate. The complexity and diversity of the disease among individuals have made it challenging to find reliable biomarkers. Now, researchers have developed an artificial intelligence (AI)-based tool to improve the accuracy of predicting chemotherapy responses in patients with ovarian cancer.
The tool, named IRON (Integrated Radiogenomics for Ovarian Neoadjuvant therapy), was developed by researchers at the Catholic University of the Sacred Heart (Milan, Italy). IRON analyzes a range of clinical features, including circulating tumor DNA from blood samples (liquid biopsy), patient demographics (age, health status, etc.), tumor markers, and CT scan images. It then predicts the likelihood of a successful therapy outcome, specifically the volumetric reduction of tumor lesions. Impressively, IRON can predict therapy outcomes with an 80% accuracy rate, a significant improvement over existing clinical methods.
For their research, the team compiled two datasets comprising 134 patients in total, with 92 in the first dataset and 42 in a separate validation set. They collected comprehensive clinical data for these patients, including demographic information, treatment specifics, blood biomarkers like CA-125, and circulating tumor DNA. Additionally, they gathered quantitative details from CT scans of all primary and metastatic tumor sites. Notably, omental and pelvic/ovarian sites, where ovarian cancer commonly spreads, were observed to carry the majority of the disease burden initially. It was found that omental deposits responded better to neoadjuvant therapy compared to pelvic disease.
The researchers also examined tumor mutations (such as TP53 MAF in circulating DNA) and the CA-125 marker in relation to the overall disease burden before treatment and response to therapy. Advanced analysis of CT scan images identified six patient subgroups, each with unique biological and clinical features indicative of their response to therapy. These tumor characteristics were fed into AI algorithms, creating a comprehensive model. After being trained, the model’s effectiveness was validated using the independent patient sample, showcasing its potential to enhance ovarian cancer treatment strategies.
"From a clinical perspective, the proposed framework addresses the unmet need to early identify patients unlikely to respond to neoadjuvant therapy and may be directed to immediate surgical intervention," said Professor Evis Sala who coordinated the study.
Related Links:
Catholic University of the Sacred Heart
Latest General/Advanced Imaging News
- AI-Powered Imaging System Improves Lung Cancer Diagnosis
- AI Model Significantly Enhances Low-Dose CT Capabilities
- Ultra-Low Dose CT Aids Pneumonia Diagnosis in Immunocompromised Patients
- AI Reduces CT Lung Cancer Screening Workload by Almost 80%
- Cutting-Edge Technology Combines Light and Sound for Real-Time Stroke Monitoring
- AI System Detects Subtle Changes in Series of Medical Images Over Time
- New CT Scan Technique to Improve Prognosis and Treatments for Head and Neck Cancers
- World’s First Mobile Whole-Body CT Scanner to Provide Diagnostics at POC
- Comprehensive CT Scans Could Identify Atherosclerosis Among Lung Cancer Patients
- AI Improves Detection of Colorectal Cancer on Routine Abdominopelvic CT Scans
- Super-Resolution Technology Enhances Clinical Bone Imaging to Predict Osteoporotic Fracture Risk
- AI-Powered Abdomen Map Enables Early Cancer Detection
- Deep Learning Model Detects Lung Tumors on CT
- AI Predicts Cardiovascular Risk from CT Scans
- Deep Learning Based Algorithms Improve Tumor Detection in PET/CT Scans
- New Technology Provides Coronary Artery Calcification Scoring on Ungated Chest CT Scans
Channels
Radiography
view channel
World's Largest Class Single Crystal Diamond Radiation Detector Opens New Possibilities for Diagnostic Imaging
Diamonds possess ideal physical properties for radiation detection, such as exceptional thermal and chemical stability along with a quick response time. Made of carbon with an atomic number of six, diamonds... Read more
AI-Powered Imaging Technique Shows Promise in Evaluating Patients for PCI
Percutaneous coronary intervention (PCI), also known as coronary angioplasty, is a minimally invasive procedure where small metal tubes called stents are inserted into partially blocked coronary arteries... Read moreMRI
view channel
AI Tool Predicts Relapse of Pediatric Brain Cancer from Brain MRI Scans
Many pediatric gliomas are treatable with surgery alone, but relapses can be catastrophic. Predicting which patients are at risk for recurrence remains challenging, leading to frequent follow-ups with... Read more
AI Tool Tracks Effectiveness of Multiple Sclerosis Treatments Using Brain MRI Scans
Multiple sclerosis (MS) is a condition in which the immune system attacks the brain and spinal cord, leading to impairments in movement, sensation, and cognition. Magnetic Resonance Imaging (MRI) markers... Read more
Ultra-Powerful MRI Scans Enable Life-Changing Surgery in Treatment-Resistant Epileptic Patients
Approximately 360,000 individuals in the UK suffer from focal epilepsy, a condition in which seizures spread from one part of the brain. Around a third of these patients experience persistent seizures... Read moreUltrasound
view channel.jpeg)
AI-Powered Lung Ultrasound Outperforms Human Experts in Tuberculosis Diagnosis
Despite global declines in tuberculosis (TB) rates in previous years, the incidence of TB rose by 4.6% from 2020 to 2023. Early screening and rapid diagnosis are essential elements of the World Health... Read more
AI Identifies Heart Valve Disease from Common Imaging Test
Tricuspid regurgitation is a condition where the heart's tricuspid valve does not close completely during contraction, leading to backward blood flow, which can result in heart failure. A new artificial... Read moreNuclear Medicine
view channel
Novel Radiolabeled Antibody Improves Diagnosis and Treatment of Solid Tumors
Interleukin-13 receptor α-2 (IL13Rα2) is a cell surface receptor commonly found in solid tumors such as glioblastoma, melanoma, and breast cancer. It is minimally expressed in normal tissues, making it... Read more
Novel PET Imaging Approach Offers Never-Before-Seen View of Neuroinflammation
COX-2, an enzyme that plays a key role in brain inflammation, can be significantly upregulated by inflammatory stimuli and neuroexcitation. Researchers suggest that COX-2 density in the brain could serve... Read moreImaging IT
view channel
New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible
Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Global AI in Medical Diagnostics Market to Be Driven by Demand for Image Recognition in Radiology
The global artificial intelligence (AI) in medical diagnostics market is expanding with early disease detection being one of its key applications and image recognition becoming a compelling consumer proposition... Read moreIndustry News
view channel
GE HealthCare and NVIDIA Collaboration to Reimagine Diagnostic Imaging
GE HealthCare (Chicago, IL, USA) has entered into a collaboration with NVIDIA (Santa Clara, CA, USA), expanding the existing relationship between the two companies to focus on pioneering innovation in... Read more
Patient-Specific 3D-Printed Phantoms Transform CT Imaging
New research has highlighted how anatomically precise, patient-specific 3D-printed phantoms are proving to be scalable, cost-effective, and efficient tools in the development of new CT scan algorithms... Read more
Siemens and Sectra Collaborate on Enhancing Radiology Workflows
Siemens Healthineers (Forchheim, Germany) and Sectra (Linköping, Sweden) have entered into a collaboration aimed at enhancing radiologists' diagnostic capabilities and, in turn, improving patient care... Read more