AI Algorithm Twice As Accurate As Biopsy at Grading Cancer Aggressiveness from CT Scans
By MedImaging International staff writers Posted on 02 Nov 2023 |

Soft tissue sarcomas are cancers that originate in the connective tissues of the body, such as fat, muscle, nerves, as well as blood and lymph vessels. These sarcomas are a diverse and biologically intricate set of cancers, occurring so rarely that a clinician may encounter only a couple of cases throughout their career, leading to potential delays in diagnosis. The visual differentiation of these sarcomas, especially outside specialized centers, is highly challenging. Now, new research has revealed that artificial intelligence (AI) could double the accuracy of current methods, such as biopsies, in determining the severity of some sarcomas using CT imaging.
Results from the study by researchers from The Royal Marsden NHS Foundation Trust (London, UK) and The Institute of Cancer Research (ICR, London, UK) suggest that a novel AI algorithm could provide a more precise and non-invasive approach to personalizing treatment for sarcoma patients compared to biopsies, which are invasive and currently standard practice. The study also suggests that this AI could help in quicker identification of the specific sarcoma subtypes. This technique, researchers anticipate, could also extend its benefits to the diagnosis and treatment of other cancer forms, aiding a large number of patients annually.
For developing the AI algorithm, researchers used CT scans from 170 patients at The Royal Marsden diagnosed with leiomyosarcoma or liposarcoma, two prevalent forms of retroperitoneal sarcoma. The AI was then validated using data from almost 90 patients across Europe and the United States. The AI's analysis, called radiomics, scrutinizes CT scan data to discern disease characteristics that are not visible to the naked eye. This AI model successfully determined the aggressiveness of 82% of the tumors it analyzed, whereas biopsies achieved correct grading in about 44% of cases. It could also correctly identify the sarcoma type in 84% of the cases it was tested on, distinguishing effectively between leiomyosaroma and liposarcoma, unlike radiologists who could not diagnose 35% of the cases.
The researchers expect the AI technology to enhance the clinical management and outcomes of the disease. For instance, identifying high-grade tumors, which may indicate a more aggressive cancer, could mean that high-risk patients receive more intensive treatment while those at lower risk might avoid unnecessary treatments, excessive follow-up scans, and hospital stays. Additionally, this tool could speed up the diagnosis process by aiding clinicians in more confidently identifying the subtype of a sarcoma they might not have encountered before due to its rarity. The research team plans to further evaluate this AI model in a clinical setting with patients who may have retroperitoneal sarcomas to verify its accuracy in real-world diagnosis and observe the technology's performance over time.
“Through this early research, we’ve developed an innovative AI tool using imaging data that could help us more accurately and quickly identify the type and grade of retroperitoneal sarcomas than current methods,” said Dr. Amani Arthur, Clinical Research Fellow at The Institute of Cancer Research, London. “This could improve patient outcomes by helping to speed up diagnosis of the disease, and better tailor treatment by reliably identifying the risk of each patient’s disease.”
“We’re incredibly excited by the potential of this state-of-the-art technology, which could lead to patients having better outcomes through faster diagnosis and more effectively personalized treatment. As patients with retroperitoneal sarcoma are routinely scanned with CT, we hope this tool will eventually be used globally, ensuring that not just specialist centers – who see sarcoma patients every day – can reliably identify and grade the disease,” added Professor Christina Messiou, Consultant Radiologist at The Royal Marsden NHS Foundation Trust and Professor in Imaging for Personalised Oncology at The Institute of Cancer Research, London. “In the future, this approach may help characterize other types of cancer, not just retroperitoneal sarcoma. Our novel approach used features specific to this disease, but by refining the algorithm, this technology could one day improve the outcomes of thousands of patients each year.”
Related Links:
The Royal Marsden NHS Foundation Trust
The Institute of Cancer Research
Latest General/Advanced Imaging News
- AI-Powered Imaging System Improves Lung Cancer Diagnosis
- AI Model Significantly Enhances Low-Dose CT Capabilities
- Ultra-Low Dose CT Aids Pneumonia Diagnosis in Immunocompromised Patients
- AI Reduces CT Lung Cancer Screening Workload by Almost 80%
- Cutting-Edge Technology Combines Light and Sound for Real-Time Stroke Monitoring
- AI System Detects Subtle Changes in Series of Medical Images Over Time
- New CT Scan Technique to Improve Prognosis and Treatments for Head and Neck Cancers
- World’s First Mobile Whole-Body CT Scanner to Provide Diagnostics at POC
- Comprehensive CT Scans Could Identify Atherosclerosis Among Lung Cancer Patients
- AI Improves Detection of Colorectal Cancer on Routine Abdominopelvic CT Scans
- Super-Resolution Technology Enhances Clinical Bone Imaging to Predict Osteoporotic Fracture Risk
- AI-Powered Abdomen Map Enables Early Cancer Detection
- Deep Learning Model Detects Lung Tumors on CT
- AI Predicts Cardiovascular Risk from CT Scans
- Deep Learning Based Algorithms Improve Tumor Detection in PET/CT Scans
- New Technology Provides Coronary Artery Calcification Scoring on Ungated Chest CT Scans
Channels
Radiography
view channel
World's Largest Class Single Crystal Diamond Radiation Detector Opens New Possibilities for Diagnostic Imaging
Diamonds possess ideal physical properties for radiation detection, such as exceptional thermal and chemical stability along with a quick response time. Made of carbon with an atomic number of six, diamonds... Read more
AI-Powered Imaging Technique Shows Promise in Evaluating Patients for PCI
Percutaneous coronary intervention (PCI), also known as coronary angioplasty, is a minimally invasive procedure where small metal tubes called stents are inserted into partially blocked coronary arteries... Read moreMRI
view channel
AI Tool Predicts Relapse of Pediatric Brain Cancer from Brain MRI Scans
Many pediatric gliomas are treatable with surgery alone, but relapses can be catastrophic. Predicting which patients are at risk for recurrence remains challenging, leading to frequent follow-ups with... Read more
AI Tool Tracks Effectiveness of Multiple Sclerosis Treatments Using Brain MRI Scans
Multiple sclerosis (MS) is a condition in which the immune system attacks the brain and spinal cord, leading to impairments in movement, sensation, and cognition. Magnetic Resonance Imaging (MRI) markers... Read more
Ultra-Powerful MRI Scans Enable Life-Changing Surgery in Treatment-Resistant Epileptic Patients
Approximately 360,000 individuals in the UK suffer from focal epilepsy, a condition in which seizures spread from one part of the brain. Around a third of these patients experience persistent seizures... Read moreUltrasound
view channel.jpeg)
AI-Powered Lung Ultrasound Outperforms Human Experts in Tuberculosis Diagnosis
Despite global declines in tuberculosis (TB) rates in previous years, the incidence of TB rose by 4.6% from 2020 to 2023. Early screening and rapid diagnosis are essential elements of the World Health... Read more
AI Identifies Heart Valve Disease from Common Imaging Test
Tricuspid regurgitation is a condition where the heart's tricuspid valve does not close completely during contraction, leading to backward blood flow, which can result in heart failure. A new artificial... Read moreNuclear Medicine
view channel
Novel Radiolabeled Antibody Improves Diagnosis and Treatment of Solid Tumors
Interleukin-13 receptor α-2 (IL13Rα2) is a cell surface receptor commonly found in solid tumors such as glioblastoma, melanoma, and breast cancer. It is minimally expressed in normal tissues, making it... Read more
Novel PET Imaging Approach Offers Never-Before-Seen View of Neuroinflammation
COX-2, an enzyme that plays a key role in brain inflammation, can be significantly upregulated by inflammatory stimuli and neuroexcitation. Researchers suggest that COX-2 density in the brain could serve... Read moreImaging IT
view channel
New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible
Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Global AI in Medical Diagnostics Market to Be Driven by Demand for Image Recognition in Radiology
The global artificial intelligence (AI) in medical diagnostics market is expanding with early disease detection being one of its key applications and image recognition becoming a compelling consumer proposition... Read moreIndustry News
view channel
GE HealthCare and NVIDIA Collaboration to Reimagine Diagnostic Imaging
GE HealthCare (Chicago, IL, USA) has entered into a collaboration with NVIDIA (Santa Clara, CA, USA), expanding the existing relationship between the two companies to focus on pioneering innovation in... Read more
Patient-Specific 3D-Printed Phantoms Transform CT Imaging
New research has highlighted how anatomically precise, patient-specific 3D-printed phantoms are proving to be scalable, cost-effective, and efficient tools in the development of new CT scan algorithms... Read more
Siemens and Sectra Collaborate on Enhancing Radiology Workflows
Siemens Healthineers (Forchheim, Germany) and Sectra (Linköping, Sweden) have entered into a collaboration aimed at enhancing radiologists' diagnostic capabilities and, in turn, improving patient care... Read more