Noncontact Laser-Based Ultrasound System Delivers Same Performance as MRI and CT at Lower Cost
By MedImaging International staff writers Posted on 04 Sep 2023 |

Ultrasound is routinely employed by medical professionals to aid in the assessment and diagnosis of a wide array of health conditions, diseases, and injuries. Through ultrasound, doctors can obtain noninvasive insights into the body's internal structures, imaging various tissues and their shapes. Ultrasound is also capable of measuring the pulsating blood flow within arteries and veins, as well as assessing the mechanical attributes (elastography) of organs and tissues. While modern medical ultrasound systems excel in capturing tissue details with submillimeter precision, they are not without limitations. Challenges such as image distortion caused by sonographers applying pressure to the probe by feel, and positional reference uncertainty, or operator variability, hamper the technology’s ability to track conditions like cancerous tumors. Consequently, more expensive techniques like magnetic resonance imaging (MRI) and computerized tomography (CT) are often employed to monitor disease progression, despite their greater complexity, larger size, higher cost, and potential radiation risks. Now, a noncontact laser ultrasound system has emerged as a cost-effective alternative, delivering capabilities similar to MRI and CT on a portable, automated platform.
Researchers at Massachusetts Institute of Technology (MIT, Cambridge, MA, USA) and their collaborators at the Massachusetts General Hospital (Boston, MA, USA) have developed a new medical imaging device called the Noncontact Laser Ultrasound (NCLUS). This laser-based ultrasound system generates images of interior body features like organs, fat, muscles, tendons, and blood vessels. NCLUS uses a pulsed laser that transmits optical energy through the air to the skin's surface. The skin absorbs the light rapidly upon contact, inducing localized heating and rapid skin deformation via a thermoelastic process. This deformation promptly generates ultrasonic waves, serving as a source of ultrasound through a phenomenon known as photoacoustics. The optical pulse yields ample ultrasound power with frequencies comparable to traditional medical ultrasound, all while producing no discernible sensation on the skin. The ultrasound echoes originating from deeper tissues emerge as localized vibrations at the skin's surface, which are captured by a specialized and highly sensitive laser Doppler vibrometer.
NCLUS’ fully automated ultrasound image acquisition process offers the potential to reduce the need for a sonographer and eliminate operator variability. Precise laser positioning ensures reproducibility, eliminating variability across repeated measurements. Importantly, since NCLUS operates without direct contact, there is no tissue compaction or related distortion of image features. Similar to MRI and CT, NCLUS employs skin markers to establish a fixed reference frame capability, allowing for reproduction and comparison of repeat scans over time. To facilitate such tracking capabilities, the research team has developed software that processes ultrasound images and detects any differences between them. Since NCLUS requires no manual pressure or coupling gels (unlike contact probes), it can be particularly suitable for patients with sensitive or painful body areas, frail conditions, or infection risks. Additionally, the system measures bone strength and holds promise for monitoring stages of disease progression.
The research team validated the system's performance using a gel-based puck mimicking the mechanical properties of human tissue, known as a phantom, that regulates ultrasound wave propagation. The team is now developing NCLUS for military applications, including the detection and characterization of life-threatening internal bleeding, monitoring musculoskeletal injuries and recovery, and offering elastographic images of amputee limb regions to expedite design and fitting of prosthetic sockets. Civilian applications of NCLUS include imaging in the intensive care unit. The next phase of the NCLUS initiative involves conducting clinical studies using a laser that ensures skin safety, with the aim of comparing ultrasound images with conventional medical ultrasound. If successful, the team will seek commercial funding for clinical medical device development, followed by approval from the U.S. Food and Drug Administration.
“Variability has been a major limitation of medical ultrasound for decades," said Anthony Samir, associate chair of Imaging Sciences at Massachusetts General Hospital radiology. "With further development, NCLUS has the potential to be a transformative technology: an automated, portable ultrasound platform with a fixed-reference-frame capability similar to that of MRI and CT."
Related Links:
MIT
Massachusetts General Hospital
Latest Ultrasound News
- Smart Ultrasound-Activated Immune Cells Destroy Cancer Cells for Extended Periods
- Tiny Magnetic Robot Takes 3D Scans from Deep Within Body
- High Resolution Ultrasound Speeds Up Prostate Cancer Diagnosis
- World's First Wireless, Handheld, Whole-Body Ultrasound with Single PZT Transducer Makes Imaging More Accessible
- Artificial Intelligence Detects Undiagnosed Liver Disease from Echocardiograms
- Ultrasound Imaging Non-Invasively Tracks Tumor Response to Radiation and Immunotherapy
- AI Improves Detection of Congenital Heart Defects on Routine Prenatal Ultrasounds
- AI Diagnoses Lung Diseases from Ultrasound Videos with 96.57% Accuracy
- New Contrast Agent for Ultrasound Imaging Ensures Affordable and Safer Medical Diagnostics
- Ultrasound-Directed Microbubbles Boost Immune Response Against Tumors
- POC Ultrasound Enhances Early Pregnancy Care and Cuts Emergency Visits
- AI-Based Models Outperform Human Experts at Identifying Ovarian Cancer in Ultrasound Images
- Automated Breast Ultrasound Provides Alternative to Mammography in Low-Resource Settings
- Transparent Ultrasound Transducer for Photoacoustic and Ultrasound Endoscopy to Improve Diagnostic Accuracy
- Wearable Ultrasound Patch Enables Continuous Blood Pressure Monitoring
- AI Image-Recognition Program Reads Echocardiograms Faster, Cuts Results Wait Time
Channels
Radiography
view channel
AI-Powered Imaging Technique Shows Promise in Evaluating Patients for PCI
Percutaneous coronary intervention (PCI), also known as coronary angioplasty, is a minimally invasive procedure where small metal tubes called stents are inserted into partially blocked coronary arteries... Read more
Higher Chest X-Ray Usage Catches Lung Cancer Earlier and Improves Survival
Lung cancer continues to be the leading cause of cancer-related deaths worldwide. While advanced technologies like CT scanners play a crucial role in detecting lung cancer, more accessible and affordable... Read moreMRI
view channel
Ultra-Powerful MRI Scans Enable Life-Changing Surgery in Treatment-Resistant Epileptic Patients
Approximately 360,000 individuals in the UK suffer from focal epilepsy, a condition in which seizures spread from one part of the brain. Around a third of these patients experience persistent seizures... Read more
AI-Powered MRI Technology Improves Parkinson’s Diagnoses
Current research shows that the accuracy of diagnosing Parkinson’s disease typically ranges from 55% to 78% within the first five years of assessment. This is partly due to the similarities shared by Parkinson’s... Read more
Biparametric MRI Combined with AI Enhances Detection of Clinically Significant Prostate Cancer
Artificial intelligence (AI) technologies are transforming the way medical images are analyzed, offering unprecedented capabilities in quantitatively extracting features that go beyond traditional visual... Read more
First-Of-Its-Kind AI-Driven Brain Imaging Platform to Better Guide Stroke Treatment Options
Each year, approximately 800,000 people in the U.S. experience strokes, with marginalized and minoritized groups being disproportionately affected. Strokes vary in terms of size and location within the... Read moreNuclear Medicine
view channel
Novel PET Imaging Approach Offers Never-Before-Seen View of Neuroinflammation
COX-2, an enzyme that plays a key role in brain inflammation, can be significantly upregulated by inflammatory stimuli and neuroexcitation. Researchers suggest that COX-2 density in the brain could serve... Read more
Novel Radiotracer Identifies Biomarker for Triple-Negative Breast Cancer
Triple-negative breast cancer (TNBC), which represents 15-20% of all breast cancer cases, is one of the most aggressive subtypes, with a five-year survival rate of about 40%. Due to its significant heterogeneity... Read moreGeneral/Advanced Imaging
view channel
AI-Powered Imaging System Improves Lung Cancer Diagnosis
Given the need to detect lung cancer at earlier stages, there is an increasing need for a definitive diagnostic pathway for patients with suspicious pulmonary nodules. However, obtaining tissue samples... Read more
AI Model Significantly Enhances Low-Dose CT Capabilities
Lung cancer remains one of the most challenging diseases, making early diagnosis vital for effective treatment. Fortunately, advancements in artificial intelligence (AI) are revolutionizing lung cancer... Read moreImaging IT
view channel
New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible
Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Global AI in Medical Diagnostics Market to Be Driven by Demand for Image Recognition in Radiology
The global artificial intelligence (AI) in medical diagnostics market is expanding with early disease detection being one of its key applications and image recognition becoming a compelling consumer proposition... Read moreIndustry News
view channel
GE HealthCare and NVIDIA Collaboration to Reimagine Diagnostic Imaging
GE HealthCare (Chicago, IL, USA) has entered into a collaboration with NVIDIA (Santa Clara, CA, USA), expanding the existing relationship between the two companies to focus on pioneering innovation in... Read more
Patient-Specific 3D-Printed Phantoms Transform CT Imaging
New research has highlighted how anatomically precise, patient-specific 3D-printed phantoms are proving to be scalable, cost-effective, and efficient tools in the development of new CT scan algorithms... Read more
Siemens and Sectra Collaborate on Enhancing Radiology Workflows
Siemens Healthineers (Forchheim, Germany) and Sectra (Linköping, Sweden) have entered into a collaboration aimed at enhancing radiologists' diagnostic capabilities and, in turn, improving patient care... Read more