We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

MedImaging

Download Mobile App
Recent News Radiography MRI Ultrasound Nuclear Medicine General/Advanced Imaging Imaging IT Industry News

AI Could Help Doctors Diagnose Lung Cancer Earlier From CT Scans

By MedImaging International staff writers
Posted on 30 May 2023
Print article
Image: The AI model can accurately identify cancerous nodules from CT scans (Photo courtesy of Freepik)
Image: The AI model can accurately identify cancerous nodules from CT scans (Photo courtesy of Freepik)

Lung cancer is the predominant cause of cancer-related deaths worldwide. While early-stage diagnoses facilitate more effective treatments, the majority of lung cancers are discovered at stage three or four, highlighting a crucial need for quicker detection measures. Lung nodules, although typically harmless, are abnormal growths that can occasionally become cancerous. Particularly large nodules (15-30mm in size) carry the highest risk. A new study suggests that artificial intelligence (AI) could aid doctors in diagnosing lung cancer earlier by precisely identifying cancerous large lung nodules in CT scans. This technology could potentially speed up lung cancer detection by prioritizing high-risk patients for treatment and enhancing the efficiency of patient scan analysis.

The LIBRA study led by researchers from The Royal Marsden NHS Foundation Trust (London, UK) used data from the CT scans of nearly 500 patients with large lung nodules. The team utilized a technique called radiomics to analyze CT scan data, which extracts disease-related information from medical images that might not be easily perceptible to the human eye. The AI model was subsequently tested for its accuracy in identifying cancerous nodules. The model's performance was evaluated using an "Area under the curve" (AUC) measure, where 1 represents a flawless model and 0.5 equates to a model merely guessing. The results suggested that the AI model could identify the risk of cancer for each nodule with an AUC of 0.87, surpassing the performance of the clinic's current Brock score test, which scored 0.672.

The AI model's performance was also comparable to another existing clinical test, the Herder score, which achieved an AUC of 0.83. However, given that the AI model only uses two variables, compared to 7 for the Herder score and 9 for the Brock score, it has the potential to simplify and accelerate nodule risk calculations in the future. The new model could also assist clinicians in making decisions about patients who currently lack a clear referral path. Under the Herder scoring system, patients with scores less than 10% are deemed low risk, while those with scores over 70% are considered high risk and require intervention. For patients in the intermediate risk group (10-70%), a variety of tests or treatment options might be considered. When paired with the Herder score, the researchers' model was capable of identifying high-risk patients within this group, suggesting early intervention for 18 out of 22 (82%) of the nodules that were later confirmed to be cancerous.

“According to these initial results, our model appears to identify cancerous large lung nodules accurately,” said Dr. Benjamin Hunter, Clinical Oncology Registrar at The Royal Marsden NHS Foundation Trust. “In the future, we hope it will improve early detection and potentially make cancer treatment more successful by highlighting high-risk patients and fast-tracking them to earlier intervention. Next, we plan to test the technology on patients with large lung nodules in clinic to see if it can accurately predict their risk of lung cancer.”

“People diagnosed with lung cancer at the earliest stage are much more likely to survive for five years, when compared with those whose cancer is caught late,” added Dr. Richard Lee, Chief investigator for the LIBRA study. “This means it is a priority we find ways to speed up the detection of the disease, and this study – which is the first to develop a radiomics model specifically focused on large lung nodules – could one day support clinicians in identifying high-risk patients.”

Related Links:
The Royal Marsden NHS Foundation Trust 

Ultrasound Table
Women’s Ultrasound EA Table
New
Mobile Cath Lab
Photon F65/F80
NMUS & MSK Ultrasound
InVisus Pro
New
Specimen Radiography System
Trident HD

Print article

Channels

MRI

view channel
Image: Comparison showing 3T and 7T scans for the same participant (Photo courtesy of P Simon Jones/University of Cambridge)

Ultra-Powerful MRI Scans Enable Life-Changing Surgery in Treatment-Resistant Epileptic Patients

Approximately 360,000 individuals in the UK suffer from focal epilepsy, a condition in which seizures spread from one part of the brain. Around a third of these patients experience persistent seizures... Read more

Ultrasound

view channel
Image: The new type of Sonogenetic EchoBack-CAR T cell (Photo courtesy of Longwei Liu/USC)

Smart Ultrasound-Activated Immune Cells Destroy Cancer Cells for Extended Periods

Chimeric antigen receptor (CAR) T-cell therapy has emerged as a highly promising cancer treatment, especially for bloodborne cancers like leukemia. This highly personalized therapy involves extracting... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more