MedImaging

Download Mobile App
Recent News Radiography MRI Ultrasound Nuclear Medicine General/Advanced Imaging Imaging IT Industry News

New Model Detects Long-COVID’s Effects Using Simple, 2D Chest X-Rays

By MedImaging International staff writers
Posted on 03 Nov 2022
Print article
Image: The advanced model can detect lung damage in long-COVID patients and classify patient subtypes (Photo courtesy of University of Iowa)
Image: The advanced model can detect lung damage in long-COVID patients and classify patient subtypes (Photo courtesy of University of Iowa)

For patients dealing with lingering respiratory symptoms from the novel coronavirus, a chest X-ray can reveal only so much. The two-dimensional (2D) scans simply cannot distinguish compromised lung function. For that diagnosis, a more expensive, three-dimensional (3D) technique called a CT scan is necessary. Yet many medical clinics do not have CT scanning equipment, leaving so-called long-COVID patients with little information about their lung function. But that may change. Researchers have developed what is called a contrastive learning model that “learns” from composite 2D images constructed from 3D CT images to detect compromised lung function in long-COVID patients. Another technique, called transfer learning, then conveys lung diagnostic information from a CT scan to a chest X-ray, thus allowing chest X-ray equipment to detect abnormalities the same as if those patients had used a CT scan.

In the study, the researchers at the University of Iowa (Iowa City, IA, USA) showed how their contrastive learning model could be applied to detect small airways disease, which is an early stage of compromised lung function in long-COVID patients. Of the long-COVID patients, the models were advanced enough to distinguish the severity of the compromised lung function, separating those with small airways disease from those with more advanced respiratory issues.

The researchers based their modeling on CT scans of 100 people who were infected with the original COVID strain and went for diagnosis for breathing problems between June and December 2020. Many of these long-COVID patients had small airways disease, which affects a network of more than 10,000 tubes at the nexus in the lung where oxygenated air mixes with blood to be carried throughout the body. People with small airways disease have many of these vessels constricted, thus limiting the oxygen-blood exchange in the lungs, and impeding breathing overall.

The researchers collected data points at two intervals in the CT lung scans - when the patient inhaled and when the patient exhaled. The researchers compared their results with a control group that had not contracted the virus as they created the contrastive learning model. The researchers also advanced the model so it could separate patients with small airways disease from those with more advanced complications, such as emphysema. The researchers note the study is limited, in part because the sample size is small, and the patients are from a single medical facility. A larger sample size, they write, may uncover more variations in lung function stemming from long COVID.

“The study demonstrated in an independent way that patients with post-COVID have two types of lung injuries (small airway disease and lung parenchyma fibrosis/inflammation) that are persistent after having recovered from their initial SARS CoV-2 infection,” said Alejandro Comellas, clinical professor of internal medicine–pulmonary, critical care, and occupational medicine, and a co-author on this study.

“The new element to the model is taking information from 3D CT scans showing lung volume and transferring that information to a model that will show these same characteristics in 2D images,” said Ching-Long Lin, Edward M. Mielnik and Samuel R. Harding professor and chair of the Department of Mechanical Engineering in the College of Engineering at Iowa. “Clinicians would be able to use chest X-rays to detect these outcomes. That’s the bigger perspective.”

“Chest X-rays are accessible, while CT scans are more expensive and not as accessible,” Lin added. “Our model can be further improved, and I believe there is potential for it to be used at all clinics without having to buy expensive imaging equipment, such as CT scanners.”

Related Links:
University of Iowa 

New
Stereotactic QA Phantom
StereoPHAN
New
Digital Radiography System
DigiEye 680
40/80-Slice CT System
uCT 528
Diagnostic Ultrasound System
MS1700C

Print article

Channels

MRI

view channel
Image: Combining AI with bpMRI improves detection of clinically significant prostate cancer (Photo courtesy of 123RF)

Biparametric MRI Combined with AI Enhances Detection of Clinically Significant Prostate Cancer

Artificial intelligence (AI) technologies are transforming the way medical images are analyzed, offering unprecedented capabilities in quantitatively extracting features that go beyond traditional visual... Read more

Ultrasound

view channel
Image: The model trained on echocardiography, can identify liver disease in people without symptoms (Photo courtesy of 123RF)

Artificial Intelligence Detects Undiagnosed Liver Disease from Echocardiograms

Echocardiography is a diagnostic procedure that uses ultrasound to visualize the heart and its associated structures. This imaging test is commonly used as an early screening method when doctors suspect... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more