New Quantitative Imaging Markers Could Improve Cancer Detection, Diagnosis and Treatment
|
By MedImaging International staff writers Posted on 24 Mar 2022 |

Medical imaging is an essential tool to help doctors and scientists assess the size and scope of a tumor that will be effectively removed by surgery, as well as the rate at which tumors shrink in response to medical interventions such as chemotherapy or radiation therapy. Researchers are now investigating multiple avenues, including the development of quantitative imaging markers, to help improve medical imaging use in cancer detection, diagnosis and treatment.
Researchers at the Oklahoma Center of Medical Imaging for Translational Cancer Research (Norman, OK, USA) are developing quantitative imaging markers to provide an objective measure or index that can reduce subjectivity and improve consistency for medical image diagnosis using two primary types of research approaches. The first approach is to develop new investigative cutting-edge imaging modalities to expand ability of doctors to see or detect more detailed tumor internal structures such as using the advanced optical imaging modalities and technology. The second is to explore and extract more effective image features from the existing clinical imaging modalities - like CT, MRI and X-ray images - and then using artificial intelligence or machine learning models to develop new quantitative imaging markers to help reduce subjectivity and variability of cancer diagnosis and predicting cancer prognosis.
The center is beginning with four projects currently underway. In the first project, the researchers are using improved imaging modalities and quantitative markers to more clearly define the margin of a tumor to improve patient outcomes. The second project will focus on developing a 3D super-resolution optical microscope as a novel and unique method which enables researchers to better understand the intracellular pathways that nanoparticles take during transcytosis to treat tumors. The center will support the purchase of a 3D super-resolution optical microscope to allow researchers to better study nanomedicine, a branch of medicine that fuses nanotechnology and medicine for cancer treatment and prevention. The high-powered microscope will improve research in this area.
The third project aims to use artificial intelligence and machine learning with current CT imaging and pathology data to develop a model that can inform the establishment of imaging markers that can reduce subjectivity and variability of imaging results and improve patient treatment. The fourth project aims to use new investigative imaging methods, optical coherence tomography and full-field optical coherence tomography to test an exploratory cancer drug. Previous studies have shown that an anti-parasitic drug may have the potential to treat certain forms of cancer, including ovarian cancer, but more research is needed for scientists to better understand its effects.
“When some patients undergo cancer treatments, some will respond favorably while others do not. The tumor continues to grow, so if we can develop a quantitative imaging marker to predict a patient’s likelihood to respond to a certain kind of chemotherapy or treatment, we can help physicians explore an alternative approach that may be more effective,” said Bin Zheng, Ph.D., a professor and Oklahoma TSET Cancer Research Scholar in the Gallogly College of Engineering’s School of Electrical and Computer Engineering, is leading the center.
“We propose to develop a new approach to identify new quantitative image markers computed from three types of neuroimaging data using artificial intelligence, which enables us to more clearly define the margin of the tumor, predict the recovery of neurological deficits, and thus help improve surgical effect and survival of patients,” said Han Yuan, Ph.D., an associate professor in the Stephenson School of Biomedical Engineering at OU Norman, who is leading the project, “Neuroimaging Markers for Predicting Outcome of Brain Surgery.”
Related Links:
Oklahoma Center of Medical Imaging for Translational Cancer Research
Latest General/Advanced Imaging News
- 3D Scanning Approach Enables Ultra-Precise Brain Surgery
- AI Tool Improves Medical Imaging Process by 90%
- New Ultrasmall, Light-Sensitive Nanoparticles Could Serve as Contrast Agents
- AI Algorithm Accurately Predicts Pancreatic Cancer Metastasis Using Routine CT Images
- Cutting-Edge Angio-CT Solution Offers New Therapeutic Possibilities
- Extending CT Imaging Detects Hidden Blood Clots in Stroke Patients
- Groundbreaking AI Model Accurately Segments Liver Tumors from CT Scans
- New CT-Based Indicator Helps Predict Life-Threatening Postpartum Bleeding Cases
- CT Colonography Beats Stool DNA Testing for Colon Cancer Screening
- First-Of-Its-Kind Wearable Device Offers Revolutionary Alternative to CT Scans
- AI-Based CT Scan Analysis Predicts Early-Stage Kidney Damage Due to Cancer Treatments
- CT-Based Deep Learning-Driven Tool to Enhance Liver Cancer Diagnosis
- AI-Powered Imaging System Improves Lung Cancer Diagnosis
- AI Model Significantly Enhances Low-Dose CT Capabilities
- Ultra-Low Dose CT Aids Pneumonia Diagnosis in Immunocompromised Patients
- AI Reduces CT Lung Cancer Screening Workload by Almost 80%
Channels
Radiography
view channel
X-Ray Breakthrough Captures Three Image-Contrast Types in Single Shot
Detecting early-stage cancer or subtle changes deep inside tissues has long challenged conventional X-ray systems, which rely only on how structures absorb radiation. This limitation keeps many microstructural... Read more
AI Generates Future Knee X-Rays to Predict Osteoarthritis Progression Risk
Osteoarthritis, a degenerative joint disease affecting over 500 million people worldwide, is the leading cause of disability among older adults. Current diagnostic tools allow doctors to assess damage... Read moreMRI
view channel
Novel Imaging Approach to Improve Treatment for Spinal Cord Injuries
Vascular dysfunction in the spinal cord contributes to multiple neurological conditions, including traumatic injuries and degenerative cervical myelopathy, where reduced blood flow can lead to progressive... Read more
AI-Assisted Model Enhances MRI Heart Scans
A cardiac MRI can reveal critical information about the heart’s function and any abnormalities, but traditional scans take 30 to 90 minutes and often suffer from poor image quality due to patient movement.... Read more
AI Model Outperforms Doctors at Identifying Patients Most At-Risk of Cardiac Arrest
Hypertrophic cardiomyopathy is one of the most common inherited heart conditions and a leading cause of sudden cardiac death in young individuals and athletes. While many patients live normal lives, some... Read moreUltrasound
view channel
Wearable Ultrasound Imaging System to Enable Real-Time Disease Monitoring
Chronic conditions such as hypertension and heart failure require close monitoring, yet today’s ultrasound imaging is largely confined to hospitals and short, episodic scans. This reactive model limits... Read more
Ultrasound Technique Visualizes Deep Blood Vessels in 3D Without Contrast Agents
Producing clear 3D images of deep blood vessels has long been difficult without relying on contrast agents, CT scans, or MRI. Standard ultrasound typically provides only 2D cross-sections, limiting clinicians’... Read moreNuclear Medicine
view channel
PET Imaging of Inflammation Predicts Recovery and Guides Therapy After Heart Attack
Acute myocardial infarction can trigger lasting heart damage, yet clinicians still lack reliable tools to identify which patients will regain function and which may develop heart failure.... Read more
Radiotheranostic Approach Detects, Kills and Reprograms Aggressive Cancers
Aggressive cancers such as osteosarcoma and glioblastoma often resist standard therapies, thrive in hostile tumor environments, and recur despite surgery, radiation, or chemotherapy. These tumors also... Read more
New Imaging Solution Improves Survival for Patients with Recurring Prostate Cancer
Detecting recurrent prostate cancer remains one of the most difficult challenges in oncology, as standard imaging methods such as bone scans and CT scans often fail to accurately locate small or early-stage tumors.... Read moreImaging IT
view channel
New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible
Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Global AI in Medical Diagnostics Market to Be Driven by Demand for Image Recognition in Radiology
The global artificial intelligence (AI) in medical diagnostics market is expanding with early disease detection being one of its key applications and image recognition becoming a compelling consumer proposition... Read moreIndustry News
view channel
GE HealthCare and NVIDIA Collaboration to Reimagine Diagnostic Imaging
GE HealthCare (Chicago, IL, USA) has entered into a collaboration with NVIDIA (Santa Clara, CA, USA), expanding the existing relationship between the two companies to focus on pioneering innovation in... Read morePatient-Specific 3D-Printed Phantoms Transform CT Imaging
New research has highlighted how anatomically precise, patient-specific 3D-printed phantoms are proving to be scalable, cost-effective, and efficient tools in the development of new CT scan algorithms... Read more
Siemens and Sectra Collaborate on Enhancing Radiology Workflows
Siemens Healthineers (Forchheim, Germany) and Sectra (Linköping, Sweden) have entered into a collaboration aimed at enhancing radiologists' diagnostic capabilities and, in turn, improving patient care... Read more







