Artificial Intelligence Predicts Treatment Success for Melanoma Patients from Early CT Scans
By MedImaging International staff writers Posted on 08 Mar 2022 |

Artificial intelligence (AI) is poised to revolutionize the field of radiology as a tool to improve disease detection, diagnosis, and clinical care. The technology has the potential to assist clinicians by uncovering hidden information within imaging scans invisible to even the well-trained eye. Now, researchers have demonstrated that applying AI to standard-of-care imaging can help predict how well immunotherapy will work for patients with melanoma.
Researchers at Columbia University (New York, NY, USA) have developed a machine learning algorithm that analyzes a patient’s computed tomography (CT) scans and creates a biomarker – known as a radiomic signature – that correlates with patient outcome. The signature used specific features of the tumor to determine with high accuracy whether a given individual’s disease would respond well to immunotherapy, remain stable, or continue to progress. The goal of immunotherapy, which has become a primary treatment for melanoma, is to stimulate a patient’s own immune system to fight cancer.
Currently, clinicians rely almost entirely on tumor size to estimate the benefit of a therapy. Patients receive a baseline CT scan and then subsequent follow-up scans after treatment has begun. If the tumor shrinks, the treatment seems to be working, while growth implies that the patient’s disease is getting worse. But this is not necessarily the case with immunotherapy, and studies have shown that tumor size and growth does not always correlate with overall survival.
Biologically, tumors may evolve throughout the course of a patient’s disease in ways that are more complex than a measure of size alone can reflect. As an example of this, the researchers found that their machine learning algorithm worked best when it took not only tumor volume and growth into account, but also tumor spatial heterogeneity, or the non-uniform distribution of cancer cells across disease sites, and texture, which looks at the variation of pixel intensities across the tumor CT image.
The researchers validated the algorithm on data from 287 patients with advanced melanoma who were administered the immunotherapy drug pembrolizumab. The radiomic signature, which used CT images obtained at baseline and three-month follow-up was able to estimate overall survival at six months with a high degree of accuracy. In fact, it outperformed the standard method based on tumor diameter, known as Response Evaluation Criteria in Solid Tumors 1.1 (RECIST 1.1), which is commonly used in clinical trials to assess treatment efficacy.
The researchers now aim to expand the project to a variety of different tumor types - such as lung cancer, colon cancer, renal cancer, and prostate cancer - as well as other treatments beyond immunotherapy. The researchers wanted to start with a novel therapy and chose melanoma because of the recent, rapid adoption of immunotherapy for the disease.
“We hope to take a patient early on who looks like they are not doing well on a given therapy because of their signature and enhance, change, or add another drug to the therapy,” said Lawrence H. Schwartz, MD, the James Picker Professor and chair of the Department of Radiology at Columbia University Vagelos College of Physicians and Surgeons (VP&S).
“The field of radiology and imaging in general has never been more exciting with this artificial intelligence revolution,” added Dr. Schwartz. “We’ve always looked at advances in terms of new machines, new tracers, and things like this. But this gives us an opportunity to optimize the information that we have from all of our imaging modalities to speed diagnosis, to become more accurate and precise, and give patients more effective treatments.”
Related Links:
Columbia University
Latest General/Advanced Imaging News
- AI-Powered Imaging System Improves Lung Cancer Diagnosis
- AI Model Significantly Enhances Low-Dose CT Capabilities
- Ultra-Low Dose CT Aids Pneumonia Diagnosis in Immunocompromised Patients
- AI Reduces CT Lung Cancer Screening Workload by Almost 80%
- Cutting-Edge Technology Combines Light and Sound for Real-Time Stroke Monitoring
- AI System Detects Subtle Changes in Series of Medical Images Over Time
- New CT Scan Technique to Improve Prognosis and Treatments for Head and Neck Cancers
- World’s First Mobile Whole-Body CT Scanner to Provide Diagnostics at POC
- Comprehensive CT Scans Could Identify Atherosclerosis Among Lung Cancer Patients
- AI Improves Detection of Colorectal Cancer on Routine Abdominopelvic CT Scans
- Super-Resolution Technology Enhances Clinical Bone Imaging to Predict Osteoporotic Fracture Risk
- AI-Powered Abdomen Map Enables Early Cancer Detection
- Deep Learning Model Detects Lung Tumors on CT
- AI Predicts Cardiovascular Risk from CT Scans
- Deep Learning Based Algorithms Improve Tumor Detection in PET/CT Scans
- New Technology Provides Coronary Artery Calcification Scoring on Ungated Chest CT Scans
Channels
Radiography
view channel
World's Largest Class Single Crystal Diamond Radiation Detector Opens New Possibilities for Diagnostic Imaging
Diamonds possess ideal physical properties for radiation detection, such as exceptional thermal and chemical stability along with a quick response time. Made of carbon with an atomic number of six, diamonds... Read more
AI-Powered Imaging Technique Shows Promise in Evaluating Patients for PCI
Percutaneous coronary intervention (PCI), also known as coronary angioplasty, is a minimally invasive procedure where small metal tubes called stents are inserted into partially blocked coronary arteries... Read moreMRI
view channel
AI Tool Predicts Relapse of Pediatric Brain Cancer from Brain MRI Scans
Many pediatric gliomas are treatable with surgery alone, but relapses can be catastrophic. Predicting which patients are at risk for recurrence remains challenging, leading to frequent follow-ups with... Read more
AI Tool Tracks Effectiveness of Multiple Sclerosis Treatments Using Brain MRI Scans
Multiple sclerosis (MS) is a condition in which the immune system attacks the brain and spinal cord, leading to impairments in movement, sensation, and cognition. Magnetic Resonance Imaging (MRI) markers... Read more
Ultra-Powerful MRI Scans Enable Life-Changing Surgery in Treatment-Resistant Epileptic Patients
Approximately 360,000 individuals in the UK suffer from focal epilepsy, a condition in which seizures spread from one part of the brain. Around a third of these patients experience persistent seizures... Read moreUltrasound
view channel.jpeg)
AI-Powered Lung Ultrasound Outperforms Human Experts in Tuberculosis Diagnosis
Despite global declines in tuberculosis (TB) rates in previous years, the incidence of TB rose by 4.6% from 2020 to 2023. Early screening and rapid diagnosis are essential elements of the World Health... Read more
AI Identifies Heart Valve Disease from Common Imaging Test
Tricuspid regurgitation is a condition where the heart's tricuspid valve does not close completely during contraction, leading to backward blood flow, which can result in heart failure. A new artificial... Read moreNuclear Medicine
view channel
Novel Radiolabeled Antibody Improves Diagnosis and Treatment of Solid Tumors
Interleukin-13 receptor α-2 (IL13Rα2) is a cell surface receptor commonly found in solid tumors such as glioblastoma, melanoma, and breast cancer. It is minimally expressed in normal tissues, making it... Read more
Novel PET Imaging Approach Offers Never-Before-Seen View of Neuroinflammation
COX-2, an enzyme that plays a key role in brain inflammation, can be significantly upregulated by inflammatory stimuli and neuroexcitation. Researchers suggest that COX-2 density in the brain could serve... Read moreImaging IT
view channel
New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible
Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Global AI in Medical Diagnostics Market to Be Driven by Demand for Image Recognition in Radiology
The global artificial intelligence (AI) in medical diagnostics market is expanding with early disease detection being one of its key applications and image recognition becoming a compelling consumer proposition... Read moreIndustry News
view channel
GE HealthCare and NVIDIA Collaboration to Reimagine Diagnostic Imaging
GE HealthCare (Chicago, IL, USA) has entered into a collaboration with NVIDIA (Santa Clara, CA, USA), expanding the existing relationship between the two companies to focus on pioneering innovation in... Read more
Patient-Specific 3D-Printed Phantoms Transform CT Imaging
New research has highlighted how anatomically precise, patient-specific 3D-printed phantoms are proving to be scalable, cost-effective, and efficient tools in the development of new CT scan algorithms... Read more
Siemens and Sectra Collaborate on Enhancing Radiology Workflows
Siemens Healthineers (Forchheim, Germany) and Sectra (Linköping, Sweden) have entered into a collaboration aimed at enhancing radiologists' diagnostic capabilities and, in turn, improving patient care... Read more