New MRI Scanner Meets Third World Needs
|
By MedImaging International staff writers Posted on 27 Dec 2021 |

Image: The prototype ULF MRI brain scanner (Photo courtesy of HKU)
An ultra-low magnetic field (ULF) MRI scanner has the potential to meet clinical point of care (POC) needs in low and middle income countries.
Developed at the University of Hong Kong (HKU; China), the ULF MRI scanner uses a permanent 0.055 Tesla Samarium-cobalt magnet and deep learning (DL) algorithms for cancellation of electromagnetic interference, and as a result requires neither magnetic nor radiofrequency (RF) shielding cages. The compact, mobile scanner is intended for brain scanning, powered via a standard AC power outlet, is also and acoustically quiet during scanning. According to the HKU developers, it can be constructed for less than USD 20,000.
To test its capabilities, they implemented four standard clinical neuroimaging protocols (T1- and T2-weighted, fluid-attenuated inversion recovery like, and diffusion-weighted imaging) on 25 patients, successfully demonstrating preliminary feasibility in the diagnosis of brain tumors and stroke. In addition, as the system is ULF, it also has lower sensitivity to metallic implants, less susceptibility to artifacts at the air/tissue interface, and an extremely low RF specific absorption rate (SAR). The study describing the new MRI system was published on December 14, 2021, in Nature Communications.
“The high cost of procuring, siting/installing, maintaining and operating the current clinical scanners constitutes a major roadblock in MRI accessibility in healthcare,” concluded senior author professor of biomedical engineering Ed X. Wu, PhD, and colleagues. “Low-cost, low-power, compact, open, and shielding-free [ultra-low magnetic field] MRI for brain imaging, as demonstrated here, aims to complement rather than compete with existing high performance clinical MRI in healthcare.”
According to the Organization for Economic Co-operation and Development (OECD), in 2020 there were approximately 65,000 installations of MRI scanners worldwide (or approximately seven per one million inhabitants), as compared to about 200,000 CT scanners and over 1,500,000 ultrasound scanners. The distribution of MRI scanners is concentrated mainly within high income countries, with scarce availability in low and middle income countries. As a result, 70% of the world’s population has little to no access to MRI.
Related Links:
University of Hong Kong
Developed at the University of Hong Kong (HKU; China), the ULF MRI scanner uses a permanent 0.055 Tesla Samarium-cobalt magnet and deep learning (DL) algorithms for cancellation of electromagnetic interference, and as a result requires neither magnetic nor radiofrequency (RF) shielding cages. The compact, mobile scanner is intended for brain scanning, powered via a standard AC power outlet, is also and acoustically quiet during scanning. According to the HKU developers, it can be constructed for less than USD 20,000.
To test its capabilities, they implemented four standard clinical neuroimaging protocols (T1- and T2-weighted, fluid-attenuated inversion recovery like, and diffusion-weighted imaging) on 25 patients, successfully demonstrating preliminary feasibility in the diagnosis of brain tumors and stroke. In addition, as the system is ULF, it also has lower sensitivity to metallic implants, less susceptibility to artifacts at the air/tissue interface, and an extremely low RF specific absorption rate (SAR). The study describing the new MRI system was published on December 14, 2021, in Nature Communications.
“The high cost of procuring, siting/installing, maintaining and operating the current clinical scanners constitutes a major roadblock in MRI accessibility in healthcare,” concluded senior author professor of biomedical engineering Ed X. Wu, PhD, and colleagues. “Low-cost, low-power, compact, open, and shielding-free [ultra-low magnetic field] MRI for brain imaging, as demonstrated here, aims to complement rather than compete with existing high performance clinical MRI in healthcare.”
According to the Organization for Economic Co-operation and Development (OECD), in 2020 there were approximately 65,000 installations of MRI scanners worldwide (or approximately seven per one million inhabitants), as compared to about 200,000 CT scanners and over 1,500,000 ultrasound scanners. The distribution of MRI scanners is concentrated mainly within high income countries, with scarce availability in low and middle income countries. As a result, 70% of the world’s population has little to no access to MRI.
Related Links:
University of Hong Kong
Latest MRI News
- AI Model Reads and Diagnoses Brain MRI in Seconds
- MRI Scan Breakthrough to Help Avoid Risky Invasive Tests for Heart Patients
- MRI Scans Reveal Signature Patterns of Brain Activity to Predict Recovery from TBI
- Novel Imaging Approach to Improve Treatment for Spinal Cord Injuries
- AI-Assisted Model Enhances MRI Heart Scans
- AI Model Outperforms Doctors at Identifying Patients Most At-Risk of Cardiac Arrest
- New MRI Technique Reveals Hidden Heart Issues
- Shorter MRI Exam Effectively Detects Cancer in Dense Breasts
- MRI to Replace Painful Spinal Tap for Faster MS Diagnosis
- MRI Scans Can Identify Cardiovascular Disease Ten Years in Advance
- Simple Brain Scan Diagnoses Parkinson's Disease Years Before It Becomes Untreatable
- Cutting-Edge MRI Technology to Revolutionize Diagnosis of Common Heart Problem
- New MRI Technique Reveals True Heart Age to Prevent Attacks and Strokes
- AI Tool Predicts Relapse of Pediatric Brain Cancer from Brain MRI Scans
- AI Tool Tracks Effectiveness of Multiple Sclerosis Treatments Using Brain MRI Scans
- Ultra-Powerful MRI Scans Enable Life-Changing Surgery in Treatment-Resistant Epileptic Patients
Channels
Radiography
view channel
Routine Mammograms Could Predict Future Cardiovascular Disease in Women
Mammograms are widely used to screen for breast cancer, but they may also contain overlooked clues about cardiovascular health. Calcium deposits in the arteries of the breast signal stiffening blood vessels,... Read more
AI Detects Early Signs of Aging from Chest X-Rays
Chronological age does not always reflect how fast the body is truly aging, and current biological age tests often rely on DNA-based markers that may miss early organ-level decline. Detecting subtle, age-related... Read moreUltrasound
view channel
AI Model Accurately Detects Placenta Accreta in Pregnancy Before Delivery
Placenta accreta spectrum (PAS) is a life-threatening pregnancy complication in which the placenta abnormally attaches to the uterine wall. The condition is a leading cause of maternal mortality and morbidity... Read more
Portable Ultrasound Sensor to Enable Earlier Breast Cancer Detection
Breast cancer screening relies heavily on annual mammograms, but aggressive tumors can develop between scans, accounting for up to 30 percent of cases. These interval cancers are often diagnosed later,... Read more
Portable Imaging Scanner to Diagnose Lymphatic Disease in Real Time
Lymphatic disorders affect hundreds of millions of people worldwide and are linked to conditions ranging from limb swelling and organ dysfunction to birth defects and cancer-related complications.... Read more
Imaging Technique Generates Simultaneous 3D Color Images of Soft-Tissue Structure and Vasculature
Medical imaging tools often force clinicians to choose between speed, structural detail, and functional insight. Ultrasound is fast and affordable but typically limited to two-dimensional anatomy, while... Read moreNuclear Medicine
view channel
Radiopharmaceutical Molecule Marker to Improve Choice of Bladder Cancer Therapies
Targeted cancer therapies only work when tumor cells express the specific molecular structures they are designed to attack. In urothelial carcinoma, a common form of bladder cancer, the cell surface protein... Read more
Cancer “Flashlight” Shows Who Can Benefit from Targeted Treatments
Targeted cancer therapies can be highly effective, but only when a patient’s tumor expresses the specific protein the treatment is designed to attack. Determining this usually requires biopsies or advanced... Read moreGeneral/Advanced Imaging
view channel
AI Tool Offers Prognosis for Patients with Head and Neck Cancer
Oropharyngeal cancer is a form of head and neck cancer that can spread through lymph nodes, significantly affecting survival and treatment decisions. Current therapies often involve combinations of surgery,... Read more
New 3D Imaging System Addresses MRI, CT and Ultrasound Limitations
Medical imaging is central to diagnosing and managing injuries, cancer, infections, and chronic diseases, yet existing tools each come with trade-offs. Ultrasound, X-ray, CT, and MRI can be costly, time-consuming,... Read moreImaging IT
view channel
New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible
Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Global AI in Medical Diagnostics Market to Be Driven by Demand for Image Recognition in Radiology
The global artificial intelligence (AI) in medical diagnostics market is expanding with early disease detection being one of its key applications and image recognition becoming a compelling consumer proposition... Read moreIndustry News
view channel
Nuclear Medicine Set for Continued Growth Driven by Demand for Precision Diagnostics
Clinical imaging services face rising demand for precise molecular diagnostics and targeted radiopharmaceutical therapy as cancer and chronic disease rates climb. A new market analysis projects rapid expansion... Read more





 Guided Devices.jpg)

