POC MRI Helps Evaluate Intracerebral Hemorrhage
|
By MedImaging International staff writers Posted on 09 Sep 2021 |

Image: The Swoop low-field pMRI device (Photo courtesy of HyperFine Research)
A new study confirms that portable magnetic resonance imaging (pMRI) can scan for intracerebral hemorrhage (ICH) at the point-of-care (POC).
Researchers at Yale School of Medicine (New Haven, CT, USA) and Yale New Haven Hospital (YNHH; CT, USA) conducted a study involving 144 pMRI examinations (56 ICH, 48 acute ischemic stroke, 40 healthy controls) taken at the bedside at YNHH from July 2018 to November 2020, and compared them to traditional neuroimaging scans (non-contrast computerized tomography (CT) or 1.5/3 T MRI) to examine the efficacy of the Hyperfine Research (Guilford, CT, USA) Swoop low-field (0.064 T) pMRI device.
Two neuroradiologists evaluated all pMRI scans, with one ICH imaging core lab researcher reviewing the cases of disagreement. The raters correctly detected ICH in 45 of 56 cases (80.4%), and blood-negative cases were correctly identified in 85 of 88 cases (96.6%). Manually segmented hematoma volumes and ABC/2 formula for estimated volumes on pMRI correlated with conventional imaging volumes. Hematoma volumes measured on pMRI at discharge also correlated with manual and ABC/2 volumes. The study was published on August 25, 2021, in Nature Communications.
“There is no question this device can help save lives in resource-limited settings, such as rural hospitals or developing countries,” said senior author professor of neurology and neurosurgery Kevin Sheth, MD, of Yale School of Medicine. “There is also now a path to see how it can help in modern settings. It is of critical importance to continue to collect more data across a range of stroke characteristics so that we can maximize the potential benefit of this approach.”
The Swoop pMRI is a low-field system that features standard permanent magnets that require no power or cooling systems, producing an image using low-power radio waves and magnetic fields instead. The Swoop is controlled via a tablet device, using sequences and protocols selected from a playlist. As a result, the system is 10X lower in weight than current fixed conventional MRI systems, costs a fraction of the price, is highly portable, and plugs directly into a standard electrical wall outlet, with 35X lower power consumption.
Related Links:
Yale School of Medicine
Yale New Haven Hospital
Hyperfine Research
Researchers at Yale School of Medicine (New Haven, CT, USA) and Yale New Haven Hospital (YNHH; CT, USA) conducted a study involving 144 pMRI examinations (56 ICH, 48 acute ischemic stroke, 40 healthy controls) taken at the bedside at YNHH from July 2018 to November 2020, and compared them to traditional neuroimaging scans (non-contrast computerized tomography (CT) or 1.5/3 T MRI) to examine the efficacy of the Hyperfine Research (Guilford, CT, USA) Swoop low-field (0.064 T) pMRI device.
Two neuroradiologists evaluated all pMRI scans, with one ICH imaging core lab researcher reviewing the cases of disagreement. The raters correctly detected ICH in 45 of 56 cases (80.4%), and blood-negative cases were correctly identified in 85 of 88 cases (96.6%). Manually segmented hematoma volumes and ABC/2 formula for estimated volumes on pMRI correlated with conventional imaging volumes. Hematoma volumes measured on pMRI at discharge also correlated with manual and ABC/2 volumes. The study was published on August 25, 2021, in Nature Communications.
“There is no question this device can help save lives in resource-limited settings, such as rural hospitals or developing countries,” said senior author professor of neurology and neurosurgery Kevin Sheth, MD, of Yale School of Medicine. “There is also now a path to see how it can help in modern settings. It is of critical importance to continue to collect more data across a range of stroke characteristics so that we can maximize the potential benefit of this approach.”
The Swoop pMRI is a low-field system that features standard permanent magnets that require no power or cooling systems, producing an image using low-power radio waves and magnetic fields instead. The Swoop is controlled via a tablet device, using sequences and protocols selected from a playlist. As a result, the system is 10X lower in weight than current fixed conventional MRI systems, costs a fraction of the price, is highly portable, and plugs directly into a standard electrical wall outlet, with 35X lower power consumption.
Related Links:
Yale School of Medicine
Yale New Haven Hospital
Hyperfine Research
Latest MRI News
- Novel Imaging Approach to Improve Treatment for Spinal Cord Injuries
- AI-Assisted Model Enhances MRI Heart Scans
- AI Model Outperforms Doctors at Identifying Patients Most At-Risk of Cardiac Arrest
- New MRI Technique Reveals Hidden Heart Issues
- Shorter MRI Exam Effectively Detects Cancer in Dense Breasts
- MRI to Replace Painful Spinal Tap for Faster MS Diagnosis
- MRI Scans Can Identify Cardiovascular Disease Ten Years in Advance
- Simple Brain Scan Diagnoses Parkinson's Disease Years Before It Becomes Untreatable
- Cutting-Edge MRI Technology to Revolutionize Diagnosis of Common Heart Problem
- New MRI Technique Reveals True Heart Age to Prevent Attacks and Strokes
- AI Tool Predicts Relapse of Pediatric Brain Cancer from Brain MRI Scans
- AI Tool Tracks Effectiveness of Multiple Sclerosis Treatments Using Brain MRI Scans
- Ultra-Powerful MRI Scans Enable Life-Changing Surgery in Treatment-Resistant Epileptic Patients
- AI-Powered MRI Technology Improves Parkinson’s Diagnoses
- Biparametric MRI Combined with AI Enhances Detection of Clinically Significant Prostate Cancer
- First-Of-Its-Kind AI-Driven Brain Imaging Platform to Better Guide Stroke Treatment Options
Channels
Radiography
view channel
Routine Mammograms Could Predict Future Cardiovascular Disease in Women
Mammograms are widely used to screen for breast cancer, but they may also contain overlooked clues about cardiovascular health. Calcium deposits in the arteries of the breast signal stiffening blood vessels,... Read more
AI Detects Early Signs of Aging from Chest X-Rays
Chronological age does not always reflect how fast the body is truly aging, and current biological age tests often rely on DNA-based markers that may miss early organ-level decline. Detecting subtle, age-related... Read moreMRI
view channel
Novel Imaging Approach to Improve Treatment for Spinal Cord Injuries
Vascular dysfunction in the spinal cord contributes to multiple neurological conditions, including traumatic injuries and degenerative cervical myelopathy, where reduced blood flow can lead to progressive... Read more
AI-Assisted Model Enhances MRI Heart Scans
A cardiac MRI can reveal critical information about the heart’s function and any abnormalities, but traditional scans take 30 to 90 minutes and often suffer from poor image quality due to patient movement.... Read more
AI Model Outperforms Doctors at Identifying Patients Most At-Risk of Cardiac Arrest
Hypertrophic cardiomyopathy is one of the most common inherited heart conditions and a leading cause of sudden cardiac death in young individuals and athletes. While many patients live normal lives, some... Read moreUltrasound
view channel
Wearable Ultrasound Imaging System to Enable Real-Time Disease Monitoring
Chronic conditions such as hypertension and heart failure require close monitoring, yet today’s ultrasound imaging is largely confined to hospitals and short, episodic scans. This reactive model limits... Read more
Ultrasound Technique Visualizes Deep Blood Vessels in 3D Without Contrast Agents
Producing clear 3D images of deep blood vessels has long been difficult without relying on contrast agents, CT scans, or MRI. Standard ultrasound typically provides only 2D cross-sections, limiting clinicians’... Read moreNuclear Medicine
view channel
PET Imaging of Inflammation Predicts Recovery and Guides Therapy After Heart Attack
Acute myocardial infarction can trigger lasting heart damage, yet clinicians still lack reliable tools to identify which patients will regain function and which may develop heart failure.... Read more
Radiotheranostic Approach Detects, Kills and Reprograms Aggressive Cancers
Aggressive cancers such as osteosarcoma and glioblastoma often resist standard therapies, thrive in hostile tumor environments, and recur despite surgery, radiation, or chemotherapy. These tumors also... Read more
New Imaging Solution Improves Survival for Patients with Recurring Prostate Cancer
Detecting recurrent prostate cancer remains one of the most difficult challenges in oncology, as standard imaging methods such as bone scans and CT scans often fail to accurately locate small or early-stage tumors.... Read moreGeneral/Advanced Imaging
view channel
AI-Based Tool Accelerates Detection of Kidney Cancer
Diagnosing kidney cancer depends on computed tomography scans, often using contrast agents to reveal abnormalities in kidney structure. Tumors are not always searched for deliberately, as many scans are... Read more
New Algorithm Dramatically Speeds Up Stroke Detection Scans
When patients arrive at emergency rooms with stroke symptoms, clinicians must rapidly determine whether the cause is a blood clot or a brain bleed, as treatment decisions depend on this distinction.... Read moreImaging IT
view channel
New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible
Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Global AI in Medical Diagnostics Market to Be Driven by Demand for Image Recognition in Radiology
The global artificial intelligence (AI) in medical diagnostics market is expanding with early disease detection being one of its key applications and image recognition becoming a compelling consumer proposition... Read moreIndustry News
view channel
GE HealthCare and NVIDIA Collaboration to Reimagine Diagnostic Imaging
GE HealthCare (Chicago, IL, USA) has entered into a collaboration with NVIDIA (Santa Clara, CA, USA), expanding the existing relationship between the two companies to focus on pioneering innovation in... Read morePatient-Specific 3D-Printed Phantoms Transform CT Imaging
New research has highlighted how anatomically precise, patient-specific 3D-printed phantoms are proving to be scalable, cost-effective, and efficient tools in the development of new CT scan algorithms... Read more
Siemens and Sectra Collaborate on Enhancing Radiology Workflows
Siemens Healthineers (Forchheim, Germany) and Sectra (Linköping, Sweden) have entered into a collaboration aimed at enhancing radiologists' diagnostic capabilities and, in turn, improving patient care... Read more







