AI Diagnostic Tool Analyzes CT Scans to Spot Prostate Cancer Before Patients Have Symptoms
By MedImaging International staff writers Posted on 13 Jul 2021 |

Image: AI Diagnostic Tool Analyzes CT Scans to Spot Prostate Cancer Before Patients Have Symptoms (Photo courtesy of RMIT University)
Researchers have developed a diagnostic tool that can spot prostate cancer before patients have any symptoms, using artificial intelligence to analyze Computed Tomography (CT) scans in just seconds.
Researchers at RMIT University (Melbourne, Australia), in collaboration with clinicians at St Vincent’s Hospital Melbourne (Australia), have developed an artificial intelligence (AI) program that could catch the prostate cancer earlier, allowing for incidental detection through routine CT scans. The technology works by analyzing CT scans for tell-tale signs of prostate cancer, something even a well-trained human eye struggles to do.
Prostate cancer is the most diagnosed cancer and is slow growing, usually detected incidentally due to which it can go undiagnosed for years. It was responsible for an estimated 12% of male cancer deaths in 2020. Early detection is the key to successful treatment but men often dodge the doctor, avoiding diagnosis tests until it’s too late. CT imaging is not suitable for regular cancer screening because of the high radiation doses involved. CT scans were great for detecting bone and joint problems but even radiologists struggled to spot prostate cancers on the images. The new AI solution can be used to run a cancer check whenever men have their abdomen or pelvis scanned for other issues.
For the study, the researchers studied CT scans of asymptomatic patients, with and without prostate cancer. The team trained the AI software to look for features of disease in a variety of scans and where exactly to look for them, avoiding the need to manually crop the images. The AI performed better than radiologists who viewed the same images, detecting cancerous growths in just seconds. What’s more, the AI improved with each scan, learning and adapting to read images from different machines to spot even the smallest irregularities. The technology can be applied at scale, potentially integrating with a variety of diagnostic imaging equipment like MRI and DEXA machines - pending further research.
“We’ve trained our software to see what the human eye can’t, with the aim of spotting prostate cancer through incidental detection,” said RMIT’s Dr. Ruwan Tennakoon. “It’s like training a sniffer dog – we can teach the AI to see things that we can't with our own eyes, in the same way a dog can smell things human noses can’t.”
Related Links:
RMIT University
St Vincent’s Hospital Melbourne
Researchers at RMIT University (Melbourne, Australia), in collaboration with clinicians at St Vincent’s Hospital Melbourne (Australia), have developed an artificial intelligence (AI) program that could catch the prostate cancer earlier, allowing for incidental detection through routine CT scans. The technology works by analyzing CT scans for tell-tale signs of prostate cancer, something even a well-trained human eye struggles to do.
Prostate cancer is the most diagnosed cancer and is slow growing, usually detected incidentally due to which it can go undiagnosed for years. It was responsible for an estimated 12% of male cancer deaths in 2020. Early detection is the key to successful treatment but men often dodge the doctor, avoiding diagnosis tests until it’s too late. CT imaging is not suitable for regular cancer screening because of the high radiation doses involved. CT scans were great for detecting bone and joint problems but even radiologists struggled to spot prostate cancers on the images. The new AI solution can be used to run a cancer check whenever men have their abdomen or pelvis scanned for other issues.
For the study, the researchers studied CT scans of asymptomatic patients, with and without prostate cancer. The team trained the AI software to look for features of disease in a variety of scans and where exactly to look for them, avoiding the need to manually crop the images. The AI performed better than radiologists who viewed the same images, detecting cancerous growths in just seconds. What’s more, the AI improved with each scan, learning and adapting to read images from different machines to spot even the smallest irregularities. The technology can be applied at scale, potentially integrating with a variety of diagnostic imaging equipment like MRI and DEXA machines - pending further research.
“We’ve trained our software to see what the human eye can’t, with the aim of spotting prostate cancer through incidental detection,” said RMIT’s Dr. Ruwan Tennakoon. “It’s like training a sniffer dog – we can teach the AI to see things that we can't with our own eyes, in the same way a dog can smell things human noses can’t.”
Related Links:
RMIT University
St Vincent’s Hospital Melbourne
Latest Industry News News
- GE HealthCare and NVIDIA Collaboration to Reimagine Diagnostic Imaging
- Patient-Specific 3D-Printed Phantoms Transform CT Imaging
- Siemens and Sectra Collaborate on Enhancing Radiology Workflows
- Bracco Diagnostics and ColoWatch Partner to Expand Availability CRC Screening Tests Using Virtual Colonoscopy
- Mindray Partners with TeleRay to Streamline Ultrasound Delivery
- Philips and Medtronic Partner on Stroke Care
- Siemens and Medtronic Enter into Global Partnership for Advancing Spine Care Imaging Technologies
- RSNA 2024 Technical Exhibits to Showcase Latest Advances in Radiology
- Bracco Collaborates with Arrayus on Microbubble-Assisted Focused Ultrasound Therapy for Pancreatic Cancer
- Innovative Collaboration to Enhance Ischemic Stroke Detection and Elevate Standards in Diagnostic Imaging
- RSNA 2024 Registration Opens
- Microsoft collaborates with Leading Academic Medical Systems to Advance AI in Medical Imaging
- GE HealthCare Acquires Intelligent Ultrasound Group’s Clinical Artificial Intelligence Business
- Bayer and Rad AI Collaborate on Expanding Use of Cutting Edge AI Radiology Operational Solutions
- Polish Med-Tech Company BrainScan to Expand Extensively into Foreign Markets
- Hologic Acquires UK-Based Breast Surgical Guidance Company Endomagnetics Ltd.
Channels
Radiography
view channel
AI Hybrid Strategy Improves Mammogram Interpretation
Breast cancer screening programs rely heavily on radiologists interpreting mammograms, a process that is time-intensive and subject to errors. While artificial intelligence (AI) models have shown strong... Read more
AI Technology Predicts Personalized Five-Year Risk of Developing Breast Cancer
Breast cancer remains one of the most common cancers among women, with about one in eight receiving a diagnosis in their lifetime. Despite widespread use of mammography, about 34% of patients in the U.... Read moreMRI
view channel
AI-Assisted Model Enhances MRI Heart Scans
A cardiac MRI can reveal critical information about the heart’s function and any abnormalities, but traditional scans take 30 to 90 minutes and often suffer from poor image quality due to patient movement.... Read more
AI Model Outperforms Doctors at Identifying Patients Most At-Risk of Cardiac Arrest
Hypertrophic cardiomyopathy is one of the most common inherited heart conditions and a leading cause of sudden cardiac death in young individuals and athletes. While many patients live normal lives, some... Read moreUltrasound
view channel
Non-Invasive Ultrasound-Based Tool Accurately Detects Infant Meningitis
Meningitis, an inflammation of the membranes surrounding the brain and spinal cord, can be fatal in infants if not diagnosed and treated early. Even when treated, it may leave lasting damage, such as cognitive... Read more
Breakthrough Deep Learning Model Enhances Handheld 3D Medical Imaging
Ultrasound imaging is a vital diagnostic technique used to visualize internal organs and tissues in real time and to guide procedures such as biopsies and injections. When paired with photoacoustic imaging... Read moreNuclear Medicine
view channel
New Camera Sees Inside Human Body for Enhanced Scanning and Diagnosis
Nuclear medicine scans like single-photon emission computed tomography (SPECT) allow doctors to observe heart function, track blood flow, and detect hidden diseases. However, current detectors are either... Read more
Novel Bacteria-Specific PET Imaging Approach Detects Hard-To-Diagnose Lung Infections
Mycobacteroides abscessus is a rapidly growing mycobacteria that primarily affects immunocompromised patients and those with underlying lung diseases, such as cystic fibrosis or chronic obstructive pulmonary... Read moreGeneral/Advanced Imaging
view channel
Cutting-Edge Angio-CT Solution Offers New Therapeutic Possibilities
Maintaining accuracy and safety in interventional radiology is a constant challenge, especially as complex procedures require both high precision and efficiency. Traditional setups often involve multiple... Read more
Extending CT Imaging Detects Hidden Blood Clots in Stroke Patients
Strokes caused by blood clots or other mechanisms that obstruct blood flow in the brain account for about 85% of all strokes. Determining where a clot originates is crucial, since it guides safe and effective... Read more
Groundbreaking AI Model Accurately Segments Liver Tumors from CT Scans
Liver cancer is the sixth most common cancer worldwide and a leading cause of cancer-related deaths. Accurate segmentation of liver tumors is critical for diagnosis and therapy, but manual methods by radiologists... Read more
New CT-Based Indicator Helps Predict Life-Threatening Postpartum Bleeding Cases
Postpartum hemorrhage (PPH) is a leading cause of maternal death worldwide. While most cases can be controlled with medications and basic interventions, some become life-threatening and require invasive treatments.... Read moreImaging IT
view channel
New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible
Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more