FDA Clears First-Ever AI Mammography Triage Software that Supports both 3D and 2D Mammography
By MedImaging International staff writers Posted on 21 Apr 2021 |

Illustration
The US Food and Drug Administration has cleared the first-ever artificial intelligence (AI) mammography triage software that supports both 3D and 2D mammography.
DeepHealth (Cambridge, MA, USA), a subsidiary of RadNet, Inc. (Los Angeles, CA, USA), has received FDA clearance for Saige-Q, its mammography triage software. Saige-Q is a screening worklist prioritization tool that enables radiologists to more effectively manage their mammography cases with the use of AI. DeepHealth’s powerful new AI technology automatically identifies suspicious screening exams that may need prioritized attention, allowing radiologists to optimize their workflow for efficiency and effectiveness.
“Saige-Q is built using our core artificial intelligence algorithms, described in a recent article in Nature Medicine,” said Bill Lotter, Ph.D., CTO, and co-founder of DeepHealth. “As the first FDA-cleared mammography triage product that supports 3D mammography in addition to 2D mammography, Saige-Q demonstrates high performance that is maintained across different breast densities and lesion types.”
“As our first FDA-cleared product, Saige-Q is a major milestone for our team. It represents the first step of many towards delivering the best care possible for patients through rigorous science that clinicians and patients can trust,” said Gregory Sorensen, M.D., CEO, and co-founder of DeepHealth. “We have developed an advanced algorithm to support radiologists with the significant challenge of finding breast cancer as early as possible. Saige-Q empowers radiologists to optimize how and when they read cases marked by Saige-Q as suspicious or those not marked as suspicious, enhancing their ability to deliver the best care.”
“Receiving FDA clearance for our first mammography AI software algorithm is an important step in RadNet’s commitment to delivering the best quality of care for our patients,” added Dr. Howard Berger, President and Chief Executive Officer of RadNet. “With the almost two million mammography exams we perform annually in our markets, we will now begin to deploy this tool, enabling our mammographers to become more accurate and productive. The efficiency gains and accuracy should be further enhanced by a more advanced diagnostic algorithm we plan to submit to the FDA for its review by year end.”
“With the purchase of DeepHealth last year and the ongoing investments we are making in AI, we are dedicated to leading the transformation of our industry into utilizing machine learning to enhance patient outcomes, improve the productivity of radiologists and offer unique screening programs to health insurers which we believe will have a profound impact on population health and wellness,” Dr. Berger noted.
Related Links:
DeepHealth
RadNet, Inc.
DeepHealth (Cambridge, MA, USA), a subsidiary of RadNet, Inc. (Los Angeles, CA, USA), has received FDA clearance for Saige-Q, its mammography triage software. Saige-Q is a screening worklist prioritization tool that enables radiologists to more effectively manage their mammography cases with the use of AI. DeepHealth’s powerful new AI technology automatically identifies suspicious screening exams that may need prioritized attention, allowing radiologists to optimize their workflow for efficiency and effectiveness.
“Saige-Q is built using our core artificial intelligence algorithms, described in a recent article in Nature Medicine,” said Bill Lotter, Ph.D., CTO, and co-founder of DeepHealth. “As the first FDA-cleared mammography triage product that supports 3D mammography in addition to 2D mammography, Saige-Q demonstrates high performance that is maintained across different breast densities and lesion types.”
“As our first FDA-cleared product, Saige-Q is a major milestone for our team. It represents the first step of many towards delivering the best care possible for patients through rigorous science that clinicians and patients can trust,” said Gregory Sorensen, M.D., CEO, and co-founder of DeepHealth. “We have developed an advanced algorithm to support radiologists with the significant challenge of finding breast cancer as early as possible. Saige-Q empowers radiologists to optimize how and when they read cases marked by Saige-Q as suspicious or those not marked as suspicious, enhancing their ability to deliver the best care.”
“Receiving FDA clearance for our first mammography AI software algorithm is an important step in RadNet’s commitment to delivering the best quality of care for our patients,” added Dr. Howard Berger, President and Chief Executive Officer of RadNet. “With the almost two million mammography exams we perform annually in our markets, we will now begin to deploy this tool, enabling our mammographers to become more accurate and productive. The efficiency gains and accuracy should be further enhanced by a more advanced diagnostic algorithm we plan to submit to the FDA for its review by year end.”
“With the purchase of DeepHealth last year and the ongoing investments we are making in AI, we are dedicated to leading the transformation of our industry into utilizing machine learning to enhance patient outcomes, improve the productivity of radiologists and offer unique screening programs to health insurers which we believe will have a profound impact on population health and wellness,” Dr. Berger noted.
Related Links:
DeepHealth
RadNet, Inc.
Latest Industry News News
- GE HealthCare and NVIDIA Collaboration to Reimagine Diagnostic Imaging
- Patient-Specific 3D-Printed Phantoms Transform CT Imaging
- Siemens and Sectra Collaborate on Enhancing Radiology Workflows
- Bracco Diagnostics and ColoWatch Partner to Expand Availability CRC Screening Tests Using Virtual Colonoscopy
- Mindray Partners with TeleRay to Streamline Ultrasound Delivery
- Philips and Medtronic Partner on Stroke Care
- Siemens and Medtronic Enter into Global Partnership for Advancing Spine Care Imaging Technologies
- RSNA 2024 Technical Exhibits to Showcase Latest Advances in Radiology
- Bracco Collaborates with Arrayus on Microbubble-Assisted Focused Ultrasound Therapy for Pancreatic Cancer
- Innovative Collaboration to Enhance Ischemic Stroke Detection and Elevate Standards in Diagnostic Imaging
- RSNA 2024 Registration Opens
- Microsoft collaborates with Leading Academic Medical Systems to Advance AI in Medical Imaging
- GE HealthCare Acquires Intelligent Ultrasound Group’s Clinical Artificial Intelligence Business
- Bayer and Rad AI Collaborate on Expanding Use of Cutting Edge AI Radiology Operational Solutions
- Polish Med-Tech Company BrainScan to Expand Extensively into Foreign Markets
- Hologic Acquires UK-Based Breast Surgical Guidance Company Endomagnetics Ltd.
Channels
Radiography
view channel
World's Largest Class Single Crystal Diamond Radiation Detector Opens New Possibilities for Diagnostic Imaging
Diamonds possess ideal physical properties for radiation detection, such as exceptional thermal and chemical stability along with a quick response time. Made of carbon with an atomic number of six, diamonds... Read more
AI-Powered Imaging Technique Shows Promise in Evaluating Patients for PCI
Percutaneous coronary intervention (PCI), also known as coronary angioplasty, is a minimally invasive procedure where small metal tubes called stents are inserted into partially blocked coronary arteries... Read moreMRI
view channel
AI Tool Tracks Effectiveness of Multiple Sclerosis Treatments Using Brain MRI Scans
Multiple sclerosis (MS) is a condition in which the immune system attacks the brain and spinal cord, leading to impairments in movement, sensation, and cognition. Magnetic Resonance Imaging (MRI) markers... Read more
Ultra-Powerful MRI Scans Enable Life-Changing Surgery in Treatment-Resistant Epileptic Patients
Approximately 360,000 individuals in the UK suffer from focal epilepsy, a condition in which seizures spread from one part of the brain. Around a third of these patients experience persistent seizures... Read more
AI-Powered MRI Technology Improves Parkinson’s Diagnoses
Current research shows that the accuracy of diagnosing Parkinson’s disease typically ranges from 55% to 78% within the first five years of assessment. This is partly due to the similarities shared by Parkinson’s... Read more
Biparametric MRI Combined with AI Enhances Detection of Clinically Significant Prostate Cancer
Artificial intelligence (AI) technologies are transforming the way medical images are analyzed, offering unprecedented capabilities in quantitatively extracting features that go beyond traditional visual... Read moreUltrasound
view channel
AI Identifies Heart Valve Disease from Common Imaging Test
Tricuspid regurgitation is a condition where the heart's tricuspid valve does not close completely during contraction, leading to backward blood flow, which can result in heart failure. A new artificial... Read more
Novel Imaging Method Enables Early Diagnosis and Treatment Monitoring of Type 2 Diabetes
Type 2 diabetes is recognized as an autoimmune inflammatory disease, where chronic inflammation leads to alterations in pancreatic islet microvasculature, a key factor in β-cell dysfunction.... Read moreNuclear Medicine
view channel
Novel PET Imaging Approach Offers Never-Before-Seen View of Neuroinflammation
COX-2, an enzyme that plays a key role in brain inflammation, can be significantly upregulated by inflammatory stimuli and neuroexcitation. Researchers suggest that COX-2 density in the brain could serve... Read more
Novel Radiotracer Identifies Biomarker for Triple-Negative Breast Cancer
Triple-negative breast cancer (TNBC), which represents 15-20% of all breast cancer cases, is one of the most aggressive subtypes, with a five-year survival rate of about 40%. Due to its significant heterogeneity... Read moreGeneral/Advanced Imaging
view channel
AI-Powered Imaging System Improves Lung Cancer Diagnosis
Given the need to detect lung cancer at earlier stages, there is an increasing need for a definitive diagnostic pathway for patients with suspicious pulmonary nodules. However, obtaining tissue samples... Read more
AI Model Significantly Enhances Low-Dose CT Capabilities
Lung cancer remains one of the most challenging diseases, making early diagnosis vital for effective treatment. Fortunately, advancements in artificial intelligence (AI) are revolutionizing lung cancer... Read moreImaging IT
view channel
New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible
Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more