FDA Clears First-Ever AI Mammography Triage Software that Supports both 3D and 2D Mammography
By MedImaging International staff writers Posted on 21 Apr 2021 |

Illustration
The US Food and Drug Administration has cleared the first-ever artificial intelligence (AI) mammography triage software that supports both 3D and 2D mammography.
DeepHealth (Cambridge, MA, USA), a subsidiary of RadNet, Inc. (Los Angeles, CA, USA), has received FDA clearance for Saige-Q, its mammography triage software. Saige-Q is a screening worklist prioritization tool that enables radiologists to more effectively manage their mammography cases with the use of AI. DeepHealth’s powerful new AI technology automatically identifies suspicious screening exams that may need prioritized attention, allowing radiologists to optimize their workflow for efficiency and effectiveness.
“Saige-Q is built using our core artificial intelligence algorithms, described in a recent article in Nature Medicine,” said Bill Lotter, Ph.D., CTO, and co-founder of DeepHealth. “As the first FDA-cleared mammography triage product that supports 3D mammography in addition to 2D mammography, Saige-Q demonstrates high performance that is maintained across different breast densities and lesion types.”
“As our first FDA-cleared product, Saige-Q is a major milestone for our team. It represents the first step of many towards delivering the best care possible for patients through rigorous science that clinicians and patients can trust,” said Gregory Sorensen, M.D., CEO, and co-founder of DeepHealth. “We have developed an advanced algorithm to support radiologists with the significant challenge of finding breast cancer as early as possible. Saige-Q empowers radiologists to optimize how and when they read cases marked by Saige-Q as suspicious or those not marked as suspicious, enhancing their ability to deliver the best care.”
“Receiving FDA clearance for our first mammography AI software algorithm is an important step in RadNet’s commitment to delivering the best quality of care for our patients,” added Dr. Howard Berger, President and Chief Executive Officer of RadNet. “With the almost two million mammography exams we perform annually in our markets, we will now begin to deploy this tool, enabling our mammographers to become more accurate and productive. The efficiency gains and accuracy should be further enhanced by a more advanced diagnostic algorithm we plan to submit to the FDA for its review by year end.”
“With the purchase of DeepHealth last year and the ongoing investments we are making in AI, we are dedicated to leading the transformation of our industry into utilizing machine learning to enhance patient outcomes, improve the productivity of radiologists and offer unique screening programs to health insurers which we believe will have a profound impact on population health and wellness,” Dr. Berger noted.
Related Links:
DeepHealth
RadNet, Inc.
DeepHealth (Cambridge, MA, USA), a subsidiary of RadNet, Inc. (Los Angeles, CA, USA), has received FDA clearance for Saige-Q, its mammography triage software. Saige-Q is a screening worklist prioritization tool that enables radiologists to more effectively manage their mammography cases with the use of AI. DeepHealth’s powerful new AI technology automatically identifies suspicious screening exams that may need prioritized attention, allowing radiologists to optimize their workflow for efficiency and effectiveness.
“Saige-Q is built using our core artificial intelligence algorithms, described in a recent article in Nature Medicine,” said Bill Lotter, Ph.D., CTO, and co-founder of DeepHealth. “As the first FDA-cleared mammography triage product that supports 3D mammography in addition to 2D mammography, Saige-Q demonstrates high performance that is maintained across different breast densities and lesion types.”
“As our first FDA-cleared product, Saige-Q is a major milestone for our team. It represents the first step of many towards delivering the best care possible for patients through rigorous science that clinicians and patients can trust,” said Gregory Sorensen, M.D., CEO, and co-founder of DeepHealth. “We have developed an advanced algorithm to support radiologists with the significant challenge of finding breast cancer as early as possible. Saige-Q empowers radiologists to optimize how and when they read cases marked by Saige-Q as suspicious or those not marked as suspicious, enhancing their ability to deliver the best care.”
“Receiving FDA clearance for our first mammography AI software algorithm is an important step in RadNet’s commitment to delivering the best quality of care for our patients,” added Dr. Howard Berger, President and Chief Executive Officer of RadNet. “With the almost two million mammography exams we perform annually in our markets, we will now begin to deploy this tool, enabling our mammographers to become more accurate and productive. The efficiency gains and accuracy should be further enhanced by a more advanced diagnostic algorithm we plan to submit to the FDA for its review by year end.”
“With the purchase of DeepHealth last year and the ongoing investments we are making in AI, we are dedicated to leading the transformation of our industry into utilizing machine learning to enhance patient outcomes, improve the productivity of radiologists and offer unique screening programs to health insurers which we believe will have a profound impact on population health and wellness,” Dr. Berger noted.
Related Links:
DeepHealth
RadNet, Inc.
Latest Industry News News
- GE HealthCare and NVIDIA Collaboration to Reimagine Diagnostic Imaging
- Patient-Specific 3D-Printed Phantoms Transform CT Imaging
- Siemens and Sectra Collaborate on Enhancing Radiology Workflows
- Bracco Diagnostics and ColoWatch Partner to Expand Availability CRC Screening Tests Using Virtual Colonoscopy
- Mindray Partners with TeleRay to Streamline Ultrasound Delivery
- Philips and Medtronic Partner on Stroke Care
- Siemens and Medtronic Enter into Global Partnership for Advancing Spine Care Imaging Technologies
- RSNA 2024 Technical Exhibits to Showcase Latest Advances in Radiology
- Bracco Collaborates with Arrayus on Microbubble-Assisted Focused Ultrasound Therapy for Pancreatic Cancer
- Innovative Collaboration to Enhance Ischemic Stroke Detection and Elevate Standards in Diagnostic Imaging
- RSNA 2024 Registration Opens
- Microsoft collaborates with Leading Academic Medical Systems to Advance AI in Medical Imaging
- GE HealthCare Acquires Intelligent Ultrasound Group’s Clinical Artificial Intelligence Business
- Bayer and Rad AI Collaborate on Expanding Use of Cutting Edge AI Radiology Operational Solutions
- Polish Med-Tech Company BrainScan to Expand Extensively into Foreign Markets
- Hologic Acquires UK-Based Breast Surgical Guidance Company Endomagnetics Ltd.
Channels
Radiography
view channel
AI Hybrid Strategy Improves Mammogram Interpretation
Breast cancer screening programs rely heavily on radiologists interpreting mammograms, a process that is time-intensive and subject to errors. While artificial intelligence (AI) models have shown strong... Read more
AI Technology Predicts Personalized Five-Year Risk of Developing Breast Cancer
Breast cancer remains one of the most common cancers among women, with about one in eight receiving a diagnosis in their lifetime. Despite widespread use of mammography, about 34% of patients in the U.... Read moreMRI
view channel
AI-Assisted Model Enhances MRI Heart Scans
A cardiac MRI can reveal critical information about the heart’s function and any abnormalities, but traditional scans take 30 to 90 minutes and often suffer from poor image quality due to patient movement.... Read more
AI Model Outperforms Doctors at Identifying Patients Most At-Risk of Cardiac Arrest
Hypertrophic cardiomyopathy is one of the most common inherited heart conditions and a leading cause of sudden cardiac death in young individuals and athletes. While many patients live normal lives, some... Read moreUltrasound
view channel
Non-Invasive Ultrasound-Based Tool Accurately Detects Infant Meningitis
Meningitis, an inflammation of the membranes surrounding the brain and spinal cord, can be fatal in infants if not diagnosed and treated early. Even when treated, it may leave lasting damage, such as cognitive... Read more
Breakthrough Deep Learning Model Enhances Handheld 3D Medical Imaging
Ultrasound imaging is a vital diagnostic technique used to visualize internal organs and tissues in real time and to guide procedures such as biopsies and injections. When paired with photoacoustic imaging... Read moreNuclear Medicine
view channel
New Camera Sees Inside Human Body for Enhanced Scanning and Diagnosis
Nuclear medicine scans like single-photon emission computed tomography (SPECT) allow doctors to observe heart function, track blood flow, and detect hidden diseases. However, current detectors are either... Read more
Novel Bacteria-Specific PET Imaging Approach Detects Hard-To-Diagnose Lung Infections
Mycobacteroides abscessus is a rapidly growing mycobacteria that primarily affects immunocompromised patients and those with underlying lung diseases, such as cystic fibrosis or chronic obstructive pulmonary... Read moreGeneral/Advanced Imaging
view channel
Cutting-Edge Angio-CT Solution Offers New Therapeutic Possibilities
Maintaining accuracy and safety in interventional radiology is a constant challenge, especially as complex procedures require both high precision and efficiency. Traditional setups often involve multiple... Read more
Extending CT Imaging Detects Hidden Blood Clots in Stroke Patients
Strokes caused by blood clots or other mechanisms that obstruct blood flow in the brain account for about 85% of all strokes. Determining where a clot originates is crucial, since it guides safe and effective... Read more
Groundbreaking AI Model Accurately Segments Liver Tumors from CT Scans
Liver cancer is the sixth most common cancer worldwide and a leading cause of cancer-related deaths. Accurate segmentation of liver tumors is critical for diagnosis and therapy, but manual methods by radiologists... Read more
New CT-Based Indicator Helps Predict Life-Threatening Postpartum Bleeding Cases
Postpartum hemorrhage (PPH) is a leading cause of maternal death worldwide. While most cases can be controlled with medications and basic interventions, some become life-threatening and require invasive treatments.... Read moreImaging IT
view channel
New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible
Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more