3D Imaging System Improves Surgical Suite Efficiency
By MedImaging International staff writers Posted on 08 Apr 2021 |

Image: The OEC 3D system with C-arm (Photo courtesy of GE Healthcare)
A new radiographic system provides precise standard and volumetric interoperative imaging for spinal and orthopedic procedures.
The GE Healthcare (GE; Chicago, IL, USA) OEC 3D is built on GE's OEC Elite C-arm platform, and includes a 31x31 cm CMOS detector designed to provide high resolution images with a field of view large enough to capture L2 to S1 in a single shot. The 200° isocentric sweep creates 3D images with 19x19x19 cm volume and 512³ voxel resolution. In addition to 3D imaging, the system also provides a comprehensive 2D imaging chain, which allows surgical units to store multiple image types within the same patient case for easy reference.
The OEC 3D detailed, fully reconstructed multi-planar 3D images displayed on a 4K ultra high definition (UHD) monitor, all delivered less than 30 seconds after a scan is completed. The GE 3DXR reconstruction engine allows surgeons to analyze the volume reconstructed images quickly and easily with the aid of an advanced visualization package with preferred layouts and views, such as drag and drop, paging, and zoom. Advanced visualization also enables change of perspective views, panning through slices, and adjusting planes in coronal, sagittal, and axial views.
A step-by-step guide is designed to make scanning easy and intuitive by taking users through each stage of 3D scanning, from pre-scan to completion, allowing those with minimal training to complete a scan. For user convenience, familiar OEC icons and interfaces enable control from the C-arm’s OEC Touch, OEC Touch Tableside, remote user interface (RUI), or workstation. The OEC 3D has also been designed to integrate seamlessly with navigation systems, and the open interface architecture is built for future integrations with robotics or AI applications.
“We’re thrilled to introduce OEC 3D to clinicians who want amazing 3D volumetric images quickly during intraoperative procedures,” said Gustavo Perez Fernandez, president and CEO of GE Healthcare Image Guided Therapies. “Built on the successful OEC Elite C-arm platform, the familiar performance and functionality of the OEC 3D C-arm will make 3D imaging routine for complex spine and joint replacement procedures.”
With the rise of minimally invasive procedures such as spinal fusion or lumbar spine scoliosis, seeing all the anatomy of interest, such as cortical rims, pedicle diameters, or orbital floors in fine detail is critical. And complex spine procedures, which include insertion and placement of pedicle screws and prevention or correction of deformities, also require precise views of spinal structures.
The GE Healthcare (GE; Chicago, IL, USA) OEC 3D is built on GE's OEC Elite C-arm platform, and includes a 31x31 cm CMOS detector designed to provide high resolution images with a field of view large enough to capture L2 to S1 in a single shot. The 200° isocentric sweep creates 3D images with 19x19x19 cm volume and 512³ voxel resolution. In addition to 3D imaging, the system also provides a comprehensive 2D imaging chain, which allows surgical units to store multiple image types within the same patient case for easy reference.
The OEC 3D detailed, fully reconstructed multi-planar 3D images displayed on a 4K ultra high definition (UHD) monitor, all delivered less than 30 seconds after a scan is completed. The GE 3DXR reconstruction engine allows surgeons to analyze the volume reconstructed images quickly and easily with the aid of an advanced visualization package with preferred layouts and views, such as drag and drop, paging, and zoom. Advanced visualization also enables change of perspective views, panning through slices, and adjusting planes in coronal, sagittal, and axial views.
A step-by-step guide is designed to make scanning easy and intuitive by taking users through each stage of 3D scanning, from pre-scan to completion, allowing those with minimal training to complete a scan. For user convenience, familiar OEC icons and interfaces enable control from the C-arm’s OEC Touch, OEC Touch Tableside, remote user interface (RUI), or workstation. The OEC 3D has also been designed to integrate seamlessly with navigation systems, and the open interface architecture is built for future integrations with robotics or AI applications.
“We’re thrilled to introduce OEC 3D to clinicians who want amazing 3D volumetric images quickly during intraoperative procedures,” said Gustavo Perez Fernandez, president and CEO of GE Healthcare Image Guided Therapies. “Built on the successful OEC Elite C-arm platform, the familiar performance and functionality of the OEC 3D C-arm will make 3D imaging routine for complex spine and joint replacement procedures.”
With the rise of minimally invasive procedures such as spinal fusion or lumbar spine scoliosis, seeing all the anatomy of interest, such as cortical rims, pedicle diameters, or orbital floors in fine detail is critical. And complex spine procedures, which include insertion and placement of pedicle screws and prevention or correction of deformities, also require precise views of spinal structures.
Latest General/Advanced Imaging News
- AI-Powered Imaging System Improves Lung Cancer Diagnosis
- AI Model Significantly Enhances Low-Dose CT Capabilities
- Ultra-Low Dose CT Aids Pneumonia Diagnosis in Immunocompromised Patients
- AI Reduces CT Lung Cancer Screening Workload by Almost 80%
- Cutting-Edge Technology Combines Light and Sound for Real-Time Stroke Monitoring
- AI System Detects Subtle Changes in Series of Medical Images Over Time
- New CT Scan Technique to Improve Prognosis and Treatments for Head and Neck Cancers
- World’s First Mobile Whole-Body CT Scanner to Provide Diagnostics at POC
- Comprehensive CT Scans Could Identify Atherosclerosis Among Lung Cancer Patients
- AI Improves Detection of Colorectal Cancer on Routine Abdominopelvic CT Scans
- Super-Resolution Technology Enhances Clinical Bone Imaging to Predict Osteoporotic Fracture Risk
- AI-Powered Abdomen Map Enables Early Cancer Detection
- Deep Learning Model Detects Lung Tumors on CT
- AI Predicts Cardiovascular Risk from CT Scans
- Deep Learning Based Algorithms Improve Tumor Detection in PET/CT Scans
- New Technology Provides Coronary Artery Calcification Scoring on Ungated Chest CT Scans
Channels
Radiography
view channel
World's Largest Class Single Crystal Diamond Radiation Detector Opens New Possibilities for Diagnostic Imaging
Diamonds possess ideal physical properties for radiation detection, such as exceptional thermal and chemical stability along with a quick response time. Made of carbon with an atomic number of six, diamonds... Read more
AI-Powered Imaging Technique Shows Promise in Evaluating Patients for PCI
Percutaneous coronary intervention (PCI), also known as coronary angioplasty, is a minimally invasive procedure where small metal tubes called stents are inserted into partially blocked coronary arteries... Read moreMRI
view channel
AI Tool Tracks Effectiveness of Multiple Sclerosis Treatments Using Brain MRI Scans
Multiple sclerosis (MS) is a condition in which the immune system attacks the brain and spinal cord, leading to impairments in movement, sensation, and cognition. Magnetic Resonance Imaging (MRI) markers... Read more
Ultra-Powerful MRI Scans Enable Life-Changing Surgery in Treatment-Resistant Epileptic Patients
Approximately 360,000 individuals in the UK suffer from focal epilepsy, a condition in which seizures spread from one part of the brain. Around a third of these patients experience persistent seizures... Read more
AI-Powered MRI Technology Improves Parkinson’s Diagnoses
Current research shows that the accuracy of diagnosing Parkinson’s disease typically ranges from 55% to 78% within the first five years of assessment. This is partly due to the similarities shared by Parkinson’s... Read more
Biparametric MRI Combined with AI Enhances Detection of Clinically Significant Prostate Cancer
Artificial intelligence (AI) technologies are transforming the way medical images are analyzed, offering unprecedented capabilities in quantitatively extracting features that go beyond traditional visual... Read moreUltrasound
view channel
AI Identifies Heart Valve Disease from Common Imaging Test
Tricuspid regurgitation is a condition where the heart's tricuspid valve does not close completely during contraction, leading to backward blood flow, which can result in heart failure. A new artificial... Read more
Novel Imaging Method Enables Early Diagnosis and Treatment Monitoring of Type 2 Diabetes
Type 2 diabetes is recognized as an autoimmune inflammatory disease, where chronic inflammation leads to alterations in pancreatic islet microvasculature, a key factor in β-cell dysfunction.... Read moreNuclear Medicine
view channel
Novel PET Imaging Approach Offers Never-Before-Seen View of Neuroinflammation
COX-2, an enzyme that plays a key role in brain inflammation, can be significantly upregulated by inflammatory stimuli and neuroexcitation. Researchers suggest that COX-2 density in the brain could serve... Read more
Novel Radiotracer Identifies Biomarker for Triple-Negative Breast Cancer
Triple-negative breast cancer (TNBC), which represents 15-20% of all breast cancer cases, is one of the most aggressive subtypes, with a five-year survival rate of about 40%. Due to its significant heterogeneity... Read moreImaging IT
view channel
New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible
Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Global AI in Medical Diagnostics Market to Be Driven by Demand for Image Recognition in Radiology
The global artificial intelligence (AI) in medical diagnostics market is expanding with early disease detection being one of its key applications and image recognition becoming a compelling consumer proposition... Read moreIndustry News
view channel
GE HealthCare and NVIDIA Collaboration to Reimagine Diagnostic Imaging
GE HealthCare (Chicago, IL, USA) has entered into a collaboration with NVIDIA (Santa Clara, CA, USA), expanding the existing relationship between the two companies to focus on pioneering innovation in... Read more
Patient-Specific 3D-Printed Phantoms Transform CT Imaging
New research has highlighted how anatomically precise, patient-specific 3D-printed phantoms are proving to be scalable, cost-effective, and efficient tools in the development of new CT scan algorithms... Read more
Siemens and Sectra Collaborate on Enhancing Radiology Workflows
Siemens Healthineers (Forchheim, Germany) and Sectra (Linköping, Sweden) have entered into a collaboration aimed at enhancing radiologists' diagnostic capabilities and, in turn, improving patient care... Read more