Radioembolization Microspheres Treat Hepatocellular Carcinoma
By MedImaging International staff writers Posted on 29 Mar 2021 |

Image: A vial of TheraSphere contains millions of microscopic glass beads containing yttrium (Photo courtesy of Boston Scientific)
A selective internal radiation therapy (SIRT) platform delivers radioactive glass microspheres directly to liver tumors, with minimal exposure to surrounding healthy tissue.
Boston Scientific (Natick, MA, USA) TheraSphere treatment is a low toxicity SIRT comprised of millions of microscopic glass beads containing yttrium (Y-90) that are delivered to a Hepatocellular Carcinoma (HCC) through a catheter placed into the hepatic artery, which provides the main blood supply to the HCC. The microspheres, which are unable to traverse the tumor vasculature, are embolized within the tumor, exerting a local beta radiation radiotherapeutic effect, as the average range of the radiation in tissue is 2.5 mm, with a maximum range less than one centimeter.
TheraSphere is available in three dose sizes, each supplied with an administration set consisting of a single use, pre-assembled vial with inlet and outlet lines that facilitate infusion of the microspheres to the catheter. Each milligram of TheraSphere contains between 22,000 and 73,000 microspheres of Y-90. The treatment does not require hospitalization, and is typically performed as an outpatient procedure in as little as an hour. TheraSphere has been approved by the FDA after almost 20 years of humanitarian exemption device (HDE).
“The FDA approval will expand access to TheraSphere, which has demonstrated improvement in both survivability and quality of life through 20 years of clinical trials and real-world outcomes in the more than 70,000 patients globally,” said Peter Pattison, president of interventional oncology and peripheral interventions at Boston Scientific. “We expect to continue to focus our efforts on bringing this treatment to more patients, as well as further investigating the therapy for different cancer segments, including prostate and brain.”
As healthy liver tissue is mainly perfused by the portal vein, and most liver malignancies derive their blood supply from the hepatic artery, trans-arterial radioembolization (TARE) using radioactive Yttrium radioactive glass microspheres can be selectively administered to the tumors. The microspheres lodge in the small vessels of the tumor (embolization), emitting localized RT to targeted segments, results in tissue necrosis. The Y-90, with a half-life of 3.85 days, decays to Zirconium-90.
Related Links:
Boston Scientific
Boston Scientific (Natick, MA, USA) TheraSphere treatment is a low toxicity SIRT comprised of millions of microscopic glass beads containing yttrium (Y-90) that are delivered to a Hepatocellular Carcinoma (HCC) through a catheter placed into the hepatic artery, which provides the main blood supply to the HCC. The microspheres, which are unable to traverse the tumor vasculature, are embolized within the tumor, exerting a local beta radiation radiotherapeutic effect, as the average range of the radiation in tissue is 2.5 mm, with a maximum range less than one centimeter.
TheraSphere is available in three dose sizes, each supplied with an administration set consisting of a single use, pre-assembled vial with inlet and outlet lines that facilitate infusion of the microspheres to the catheter. Each milligram of TheraSphere contains between 22,000 and 73,000 microspheres of Y-90. The treatment does not require hospitalization, and is typically performed as an outpatient procedure in as little as an hour. TheraSphere has been approved by the FDA after almost 20 years of humanitarian exemption device (HDE).
“The FDA approval will expand access to TheraSphere, which has demonstrated improvement in both survivability and quality of life through 20 years of clinical trials and real-world outcomes in the more than 70,000 patients globally,” said Peter Pattison, president of interventional oncology and peripheral interventions at Boston Scientific. “We expect to continue to focus our efforts on bringing this treatment to more patients, as well as further investigating the therapy for different cancer segments, including prostate and brain.”
As healthy liver tissue is mainly perfused by the portal vein, and most liver malignancies derive their blood supply from the hepatic artery, trans-arterial radioembolization (TARE) using radioactive Yttrium radioactive glass microspheres can be selectively administered to the tumors. The microspheres lodge in the small vessels of the tumor (embolization), emitting localized RT to targeted segments, results in tissue necrosis. The Y-90, with a half-life of 3.85 days, decays to Zirconium-90.
Related Links:
Boston Scientific
Latest Nuclear Medicine News
- Novel Bacteria-Specific PET Imaging Approach Detects Hard-To-Diagnose Lung Infections
- New Imaging Approach Could Reduce Need for Biopsies to Monitor Prostate Cancer
- Novel Radiolabeled Antibody Improves Diagnosis and Treatment of Solid Tumors
- Novel PET Imaging Approach Offers Never-Before-Seen View of Neuroinflammation
- Novel Radiotracer Identifies Biomarker for Triple-Negative Breast Cancer
- Innovative PET Imaging Technique to Help Diagnose Neurodegeneration
- New Molecular Imaging Test to Improve Lung Cancer Diagnosis
- Novel PET Technique Visualizes Spinal Cord Injuries to Predict Recovery
- Next-Gen Tau Radiotracers Outperform FDA-Approved Imaging Agents in Detecting Alzheimer’s
- Breakthrough Method Detects Inflammation in Body Using PET Imaging
- Advanced Imaging Reveals Hidden Metastases in High-Risk Prostate Cancer Patients
- Combining Advanced Imaging Technologies Offers Breakthrough in Glioblastoma Treatment
- New Molecular Imaging Agent Accurately Identifies Crucial Cancer Biomarker
- New Scans Light Up Aggressive Tumors for Better Treatment
- AI Stroke Brain Scan Readings Twice as Accurate as Current Method
- AI Analysis of PET/CT Images Predicts Side Effects of Immunotherapy in Lung Cancer
Channels
Radiography
view channel
AI Detects Fatty Liver Disease from Chest X-Rays
Fatty liver disease, which results from excess fat accumulation in the liver, is believed to impact approximately one in four individuals globally. If not addressed in time, it can progress to severe conditions... Read more
AI Detects Hidden Heart Disease in Existing CT Chest Scans
Coronary artery calcium (CAC) is a major indicator of cardiovascular risk, but its assessment typically requires a specialized “gated” CT scan that synchronizes with the heartbeat. In contrast, most chest... Read moreMRI
view channel
AI Model Outperforms Doctors at Identifying Patients Most At-Risk of Cardiac Arrest
Hypertrophic cardiomyopathy is one of the most common inherited heart conditions and a leading cause of sudden cardiac death in young individuals and athletes. While many patients live normal lives, some... Read more
New MRI Technique Reveals Hidden Heart Issues
Traditional exercise stress tests conducted within an MRI machine require patients to lie flat, a position that artificially improves heart function by increasing stroke volume due to gravity-driven blood... Read moreUltrasound
view channel
Wireless Chronic Pain Management Device to Reduce Need for Painkillers and Surgery
Chronic pain affects millions of people globally, often leading to long-term disability and dependence on opioid medications, which carry significant risks of side effects and addiction.... Read more
New Medical Ultrasound Imaging Technique Enables ICU Bedside Monitoring
Ultrasound computed tomography (USCT) presents a safer alternative to imaging techniques like X-ray computed tomography (commonly known as CT or “CAT” scans) because it does not produce ionizing radiation.... Read moreGeneral/Advanced Imaging
view channel
CT Colonography Beats Stool DNA Testing for Colon Cancer Screening
As colorectal cancer remains the second leading cause of cancer-related deaths worldwide, early detection through screening is vital to reduce advanced-stage treatments and associated costs.... Read more
First-Of-Its-Kind Wearable Device Offers Revolutionary Alternative to CT Scans
Currently, patients with conditions such as heart failure, pneumonia, or respiratory distress often require multiple imaging procedures that are intermittent, disruptive, and involve high levels of radiation.... Read more
AI-Based CT Scan Analysis Predicts Early-Stage Kidney Damage Due to Cancer Treatments
Radioligand therapy, a form of targeted nuclear medicine, has recently gained attention for its potential in treating specific types of tumors. However, one of the potential side effects of this therapy... Read moreImaging IT
view channel
New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible
Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Global AI in Medical Diagnostics Market to Be Driven by Demand for Image Recognition in Radiology
The global artificial intelligence (AI) in medical diagnostics market is expanding with early disease detection being one of its key applications and image recognition becoming a compelling consumer proposition... Read moreIndustry News
view channel
GE HealthCare and NVIDIA Collaboration to Reimagine Diagnostic Imaging
GE HealthCare (Chicago, IL, USA) has entered into a collaboration with NVIDIA (Santa Clara, CA, USA), expanding the existing relationship between the two companies to focus on pioneering innovation in... Read more
Patient-Specific 3D-Printed Phantoms Transform CT Imaging
New research has highlighted how anatomically precise, patient-specific 3D-printed phantoms are proving to be scalable, cost-effective, and efficient tools in the development of new CT scan algorithms... Read more
Siemens and Sectra Collaborate on Enhancing Radiology Workflows
Siemens Healthineers (Forchheim, Germany) and Sectra (Linköping, Sweden) have entered into a collaboration aimed at enhancing radiologists' diagnostic capabilities and, in turn, improving patient care... Read more