Automated AI Algorithm Uses Routine Imaging to Predict Cardiovascular Risk
By MedImaging International staff writers Posted on 02 Feb 2021 |

Illustration
An artificial intelligence (AI) deep learning system can automatically measure coronary artery calcium from routine computed tomography (CT) scans and predict cardiovascular events like heart attacks.
Investigators from the Brigham and Women’s Hospital (Boston, MA, USA) and the Massachusetts General Hospital’s Cardiovascular Imaging Research Center (CIRC; Boston, MA, USA) teamed up to develop and evaluate the deep learning system that automatically measures coronary artery calcium from CT scans to help physicians and patients make more informed decisions about cardiovascular prevention. The team validated the system using data from more than 20,000 individuals with promising results.
Coronary artery calcification - the buildup of calcified plaque in the walls of the heart’s arteries - is an important predictor of adverse cardiovascular events like heart attacks. Coronary calcium can be detected by CT scans, but quantifying the amount of plaque requires radiological expertise, time and specialized equipment. In practice, even though chest CT scans are fairly common, calcium score CTs are not. The new deep learning system automatically and accurately predicts cardiovascular events by scoring coronary calcium.
The team began by training the deep learning system on data from the Framingham Heart Study (FHS), a long-term asymptomatic community cohort study. Framingham participants received dedicated calcium scoring CT scans, which were manually scored by expert human readers and used to train the deep learning system. The deep learning system was then applied to three additional study cohorts, which included heavy smokers having lung cancer screening CT, patients with stable chest pain having cardiac CT, and patients with acute chest pain having cardiac CT. All told, the team validated the deep learning system in over 20,000 individuals. The automated calcium scores from the deep learning system highly correlated with the manual calcium scores from human experts. The automated scores also independently predicted who would go on to have a major adverse cardiovascular event like a heart attack.
“Coronary artery calcium information could be available for almost every patient who gets a chest CT scan, but it isn’t quantified simply because it takes too much time to do this for every patient,” said corresponding author Hugo Aerts, PhD, director of the Artificial Intelligence in Medicine (AIM) Program at the Brigham and Harvard Medical School. “We’ve developed an algorithm that can identify high-risk individuals in an automated manner.”
“This is an opportunity for us to get additional value from these chest CTs using AI,” said co-author Michael Lu, MD, MPH, director of artificial intelligence at MGH’s Cardiovascular Imaging Research Center. “The coronary artery calcium score can help patients and physicians make informed, personalized decisions about whether to take a statin. From a clinical perspective, our long-term goal is to implement this deep learning system in electronic health records, to automatically identify the patients at high risk.”
Related Links:
Brigham and Women’s Hospital
Massachusetts General Hospital
Investigators from the Brigham and Women’s Hospital (Boston, MA, USA) and the Massachusetts General Hospital’s Cardiovascular Imaging Research Center (CIRC; Boston, MA, USA) teamed up to develop and evaluate the deep learning system that automatically measures coronary artery calcium from CT scans to help physicians and patients make more informed decisions about cardiovascular prevention. The team validated the system using data from more than 20,000 individuals with promising results.
Coronary artery calcification - the buildup of calcified plaque in the walls of the heart’s arteries - is an important predictor of adverse cardiovascular events like heart attacks. Coronary calcium can be detected by CT scans, but quantifying the amount of plaque requires radiological expertise, time and specialized equipment. In practice, even though chest CT scans are fairly common, calcium score CTs are not. The new deep learning system automatically and accurately predicts cardiovascular events by scoring coronary calcium.
The team began by training the deep learning system on data from the Framingham Heart Study (FHS), a long-term asymptomatic community cohort study. Framingham participants received dedicated calcium scoring CT scans, which were manually scored by expert human readers and used to train the deep learning system. The deep learning system was then applied to three additional study cohorts, which included heavy smokers having lung cancer screening CT, patients with stable chest pain having cardiac CT, and patients with acute chest pain having cardiac CT. All told, the team validated the deep learning system in over 20,000 individuals. The automated calcium scores from the deep learning system highly correlated with the manual calcium scores from human experts. The automated scores also independently predicted who would go on to have a major adverse cardiovascular event like a heart attack.
“Coronary artery calcium information could be available for almost every patient who gets a chest CT scan, but it isn’t quantified simply because it takes too much time to do this for every patient,” said corresponding author Hugo Aerts, PhD, director of the Artificial Intelligence in Medicine (AIM) Program at the Brigham and Harvard Medical School. “We’ve developed an algorithm that can identify high-risk individuals in an automated manner.”
“This is an opportunity for us to get additional value from these chest CTs using AI,” said co-author Michael Lu, MD, MPH, director of artificial intelligence at MGH’s Cardiovascular Imaging Research Center. “The coronary artery calcium score can help patients and physicians make informed, personalized decisions about whether to take a statin. From a clinical perspective, our long-term goal is to implement this deep learning system in electronic health records, to automatically identify the patients at high risk.”
Related Links:
Brigham and Women’s Hospital
Massachusetts General Hospital
Latest Industry News News
- GE HealthCare and NVIDIA Collaboration to Reimagine Diagnostic Imaging
- Patient-Specific 3D-Printed Phantoms Transform CT Imaging
- Siemens and Sectra Collaborate on Enhancing Radiology Workflows
- Bracco Diagnostics and ColoWatch Partner to Expand Availability CRC Screening Tests Using Virtual Colonoscopy
- Mindray Partners with TeleRay to Streamline Ultrasound Delivery
- Philips and Medtronic Partner on Stroke Care
- Siemens and Medtronic Enter into Global Partnership for Advancing Spine Care Imaging Technologies
- RSNA 2024 Technical Exhibits to Showcase Latest Advances in Radiology
- Bracco Collaborates with Arrayus on Microbubble-Assisted Focused Ultrasound Therapy for Pancreatic Cancer
- Innovative Collaboration to Enhance Ischemic Stroke Detection and Elevate Standards in Diagnostic Imaging
- RSNA 2024 Registration Opens
- Microsoft collaborates with Leading Academic Medical Systems to Advance AI in Medical Imaging
- GE HealthCare Acquires Intelligent Ultrasound Group’s Clinical Artificial Intelligence Business
- Bayer and Rad AI Collaborate on Expanding Use of Cutting Edge AI Radiology Operational Solutions
- Polish Med-Tech Company BrainScan to Expand Extensively into Foreign Markets
- Hologic Acquires UK-Based Breast Surgical Guidance Company Endomagnetics Ltd.
Channels
Radiography
view channel
Wearable X-Ray Imaging Detecting Fabric to Provide On-The-Go Diagnostic Scanning
X-rays have been instrumental in modern medical diagnostics since their discovery, from imaging broken bones to screening for early signs of breast cancer. However, traditional X-ray detectors, primarily... Read more
AI Helps Radiologists Spot More Lesions in Mammograms
Breast cancer is a critical health issue, and accurate detection through mammography is essential for effective treatment. However, interpreting mammograms can be challenging for radiologists, particularly... Read moreMRI
view channel
AI Model Outperforms Doctors at Identifying Patients Most At-Risk of Cardiac Arrest
Hypertrophic cardiomyopathy is one of the most common inherited heart conditions and a leading cause of sudden cardiac death in young individuals and athletes. While many patients live normal lives, some... Read more
New MRI Technique Reveals Hidden Heart Issues
Traditional exercise stress tests conducted within an MRI machine require patients to lie flat, a position that artificially improves heart function by increasing stroke volume due to gravity-driven blood... Read moreUltrasound
view channel
Pain-Free Breast Imaging System Performs One Minute Cancer Scan
Breast cancer is one of the leading causes of death for women worldwide, and early detection is key to improving outcomes. Traditional methods like mammograms and ultrasound have their limitations, particularly... Read more
Wireless Chronic Pain Management Device to Reduce Need for Painkillers and Surgery
Chronic pain affects millions of people globally, often leading to long-term disability and dependence on opioid medications, which carry significant risks of side effects and addiction.... Read moreNuclear Medicine
view channel
Novel Bacteria-Specific PET Imaging Approach Detects Hard-To-Diagnose Lung Infections
Mycobacteroides abscessus is a rapidly growing mycobacteria that primarily affects immunocompromised patients and those with underlying lung diseases, such as cystic fibrosis or chronic obstructive pulmonary... Read more
New Imaging Approach Could Reduce Need for Biopsies to Monitor Prostate Cancer
Prostate cancer is the second leading cause of cancer-related death among men in the United States. However, the majority of older men diagnosed with prostate cancer have slow-growing, low-risk forms of... Read moreGeneral/Advanced Imaging
view channel
CT Colonography Beats Stool DNA Testing for Colon Cancer Screening
As colorectal cancer remains the second leading cause of cancer-related deaths worldwide, early detection through screening is vital to reduce advanced-stage treatments and associated costs.... Read more
First-Of-Its-Kind Wearable Device Offers Revolutionary Alternative to CT Scans
Currently, patients with conditions such as heart failure, pneumonia, or respiratory distress often require multiple imaging procedures that are intermittent, disruptive, and involve high levels of radiation.... Read more
AI-Based CT Scan Analysis Predicts Early-Stage Kidney Damage Due to Cancer Treatments
Radioligand therapy, a form of targeted nuclear medicine, has recently gained attention for its potential in treating specific types of tumors. However, one of the potential side effects of this therapy... Read moreImaging IT
view channel
New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible
Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more