Helical CT Imaging Accurately Guides Radiation Therapy
|
By MedImaging International staff writers Posted on 21 Jan 2021 |

Image: The Accuray Radixact System with ClearRT (Photo courtesy of Accuray)
A cutting-edge imaging solution produces high quality computerized tomography (CT) scans to enhance the versatility and efficiency of radiation therapy (RT) procedures.
The Accuray (Sunnyvale, CA) ClearRT Imaging Solution is a helical kVCT system that provides fan-beam capabilities at both kV and MV wavelengths. The large transverse field of view and continuous scan length enable rapid acquisition and facilitate patient setup and registration, including for patients with metal implants, which is a contraindication for alternative magnetic resonance (MR) imaging. The system offers both excellent uniformity and low noise across the entire scanned image, with improved soft tissue visualization and spatial resolution.
The ClearRT imaging solution integrates seamlessly into the Accuray Radixact System, delivering imaging capabilities comparable to conventional linear accelerator systems that rely on cone-beam CT (CBCT) imaging. It leverages the same 5-step delivery workflow as the Radixact System. Additionally, ClearRT helical kVCT images will be available within the Accuray PreciseART automated dose trending tool for clinicians to evaluate if plan adaptation would be beneficial, enabling personalized patient care.
“ClearRT integrates with other Accuray-only applications on the Radixact System, making it possible for providers to offer a new level of precision and accuracy in the treatment of the simplest to the most complex pathologies,” said Suzanne Winter, senior vice president of R&D at Accuray. “Our continuing innovation on the Radixact System is designed to leverage its 360-degree, helical delivery platform to facilitate hypofractionated and ultra-hypofractionated treatments that support our customers' efforts to maintain the highest standard of care for their community.”
The Radixact System is an image guided, intensity modulated radiation therapy (IG-IMRT) system with a unique ultra-fast binary multi-leaf collimator (MLC) and a continuous 360 degree ring gantry with low-dose helical fan beam technology revolving at 10 RPM. Using the refined x-ray beamline and integrated imaging solution enables clinicians to deliver highly accurate dose distributions that conform precisely to the shape of the patient’s tumor and minimize RT dose to normal, healthy tissue.
The Accuray (Sunnyvale, CA) ClearRT Imaging Solution is a helical kVCT system that provides fan-beam capabilities at both kV and MV wavelengths. The large transverse field of view and continuous scan length enable rapid acquisition and facilitate patient setup and registration, including for patients with metal implants, which is a contraindication for alternative magnetic resonance (MR) imaging. The system offers both excellent uniformity and low noise across the entire scanned image, with improved soft tissue visualization and spatial resolution.
The ClearRT imaging solution integrates seamlessly into the Accuray Radixact System, delivering imaging capabilities comparable to conventional linear accelerator systems that rely on cone-beam CT (CBCT) imaging. It leverages the same 5-step delivery workflow as the Radixact System. Additionally, ClearRT helical kVCT images will be available within the Accuray PreciseART automated dose trending tool for clinicians to evaluate if plan adaptation would be beneficial, enabling personalized patient care.
“ClearRT integrates with other Accuray-only applications on the Radixact System, making it possible for providers to offer a new level of precision and accuracy in the treatment of the simplest to the most complex pathologies,” said Suzanne Winter, senior vice president of R&D at Accuray. “Our continuing innovation on the Radixact System is designed to leverage its 360-degree, helical delivery platform to facilitate hypofractionated and ultra-hypofractionated treatments that support our customers' efforts to maintain the highest standard of care for their community.”
The Radixact System is an image guided, intensity modulated radiation therapy (IG-IMRT) system with a unique ultra-fast binary multi-leaf collimator (MLC) and a continuous 360 degree ring gantry with low-dose helical fan beam technology revolving at 10 RPM. Using the refined x-ray beamline and integrated imaging solution enables clinicians to deliver highly accurate dose distributions that conform precisely to the shape of the patient’s tumor and minimize RT dose to normal, healthy tissue.
Latest Nuclear Medicine News
- PET Imaging of Inflammation Predicts Recovery and Guides Therapy After Heart Attack
- Radiotheranostic Approach Detects, Kills and Reprograms Aggressive Cancers
- New Imaging Solution Improves Survival for Patients with Recurring Prostate Cancer
- PET Tracer Enables Same-Day Imaging of Triple-Negative Breast and Urothelial Cancers
- New Camera Sees Inside Human Body for Enhanced Scanning and Diagnosis
- Novel Bacteria-Specific PET Imaging Approach Detects Hard-To-Diagnose Lung Infections
- New Imaging Approach Could Reduce Need for Biopsies to Monitor Prostate Cancer
- Novel Radiolabeled Antibody Improves Diagnosis and Treatment of Solid Tumors
- Novel PET Imaging Approach Offers Never-Before-Seen View of Neuroinflammation
- Novel Radiotracer Identifies Biomarker for Triple-Negative Breast Cancer
- Innovative PET Imaging Technique to Help Diagnose Neurodegeneration
- New Molecular Imaging Test to Improve Lung Cancer Diagnosis
- Novel PET Technique Visualizes Spinal Cord Injuries to Predict Recovery
- Next-Gen Tau Radiotracers Outperform FDA-Approved Imaging Agents in Detecting Alzheimer’s
- Breakthrough Method Detects Inflammation in Body Using PET Imaging
- Advanced Imaging Reveals Hidden Metastases in High-Risk Prostate Cancer Patients
Channels
MRI
view channel
Novel Imaging Approach to Improve Treatment for Spinal Cord Injuries
Vascular dysfunction in the spinal cord contributes to multiple neurological conditions, including traumatic injuries and degenerative cervical myelopathy, where reduced blood flow can lead to progressive... Read more
AI-Assisted Model Enhances MRI Heart Scans
A cardiac MRI can reveal critical information about the heart’s function and any abnormalities, but traditional scans take 30 to 90 minutes and often suffer from poor image quality due to patient movement.... Read more
AI Model Outperforms Doctors at Identifying Patients Most At-Risk of Cardiac Arrest
Hypertrophic cardiomyopathy is one of the most common inherited heart conditions and a leading cause of sudden cardiac death in young individuals and athletes. While many patients live normal lives, some... Read moreUltrasound
view channel
Wearable Ultrasound Imaging System to Enable Real-Time Disease Monitoring
Chronic conditions such as hypertension and heart failure require close monitoring, yet today’s ultrasound imaging is largely confined to hospitals and short, episodic scans. This reactive model limits... Read more
Ultrasound Technique Visualizes Deep Blood Vessels in 3D Without Contrast Agents
Producing clear 3D images of deep blood vessels has long been difficult without relying on contrast agents, CT scans, or MRI. Standard ultrasound typically provides only 2D cross-sections, limiting clinicians’... Read moreNuclear Medicine
view channel
PET Imaging of Inflammation Predicts Recovery and Guides Therapy After Heart Attack
Acute myocardial infarction can trigger lasting heart damage, yet clinicians still lack reliable tools to identify which patients will regain function and which may develop heart failure.... Read more
Radiotheranostic Approach Detects, Kills and Reprograms Aggressive Cancers
Aggressive cancers such as osteosarcoma and glioblastoma often resist standard therapies, thrive in hostile tumor environments, and recur despite surgery, radiation, or chemotherapy. These tumors also... Read more
New Imaging Solution Improves Survival for Patients with Recurring Prostate Cancer
Detecting recurrent prostate cancer remains one of the most difficult challenges in oncology, as standard imaging methods such as bone scans and CT scans often fail to accurately locate small or early-stage tumors.... Read moreGeneral/Advanced Imaging
view channel
AI-Based Tool Accelerates Detection of Kidney Cancer
Diagnosing kidney cancer depends on computed tomography scans, often using contrast agents to reveal abnormalities in kidney structure. Tumors are not always searched for deliberately, as many scans are... Read more
New Algorithm Dramatically Speeds Up Stroke Detection Scans
When patients arrive at emergency rooms with stroke symptoms, clinicians must rapidly determine whether the cause is a blood clot or a brain bleed, as treatment decisions depend on this distinction.... Read moreImaging IT
view channel
New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible
Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Global AI in Medical Diagnostics Market to Be Driven by Demand for Image Recognition in Radiology
The global artificial intelligence (AI) in medical diagnostics market is expanding with early disease detection being one of its key applications and image recognition becoming a compelling consumer proposition... Read moreIndustry News
view channel
GE HealthCare and NVIDIA Collaboration to Reimagine Diagnostic Imaging
GE HealthCare (Chicago, IL, USA) has entered into a collaboration with NVIDIA (Santa Clara, CA, USA), expanding the existing relationship between the two companies to focus on pioneering innovation in... Read morePatient-Specific 3D-Printed Phantoms Transform CT Imaging
New research has highlighted how anatomically precise, patient-specific 3D-printed phantoms are proving to be scalable, cost-effective, and efficient tools in the development of new CT scan algorithms... Read more
Siemens and Sectra Collaborate on Enhancing Radiology Workflows
Siemens Healthineers (Forchheim, Germany) and Sectra (Linköping, Sweden) have entered into a collaboration aimed at enhancing radiologists' diagnostic capabilities and, in turn, improving patient care... Read more







